神经网络ANN——SPSS实现
神经网络[]
一、起源与历史
1、与传统统计方法的区别
传统线性回归模型可通过最小平方方法获取知识并在回归系数存储知识。在此意义下,其为神经网络。实际上,您可以证明线性回归为特定神经网络的特殊个案。但是,线性回归具有严格模型结构和在学习数据之前施加的一组假设。
神经网络可以接近多种统计模型,并无需您预先假设因变量和自变量间的特定关系。
若因变量和自变量间实际为线性关系,神经网络结果应接近线性回归模型的结果;
若两者为非线性关系,神经网络将自动接近“正确”模型结构。
但是如果您正试图解释生成因变量和自变量间关系的基础过程,最好使用更传统的统计模型。但是,如果模型的可解释性并不重要,您可以使用神经网络更快获取良好模型结果。[]
2、多层感知器MLP的应用
两大重要的应用:特征选择(变量选择);预测。
因变量的取值范围很广。
如何提高训练速度:编码问题(多数“压缩”编码方法通常导致较差的拟合神经网络。如果您的网络培训进行很慢,尝试通过将类似的类别组合起来或删除具有极少见类别的个案以减少分类预测变量中的类别数目);
3、非线性分析的应用
有以下几种应用在非线性分析的方法:多层感知(MLP)、径向基函数(RBF)、SVM、广义回归神经网络(GRNN)和广义神经网络(GNN)。[]
四、径向基神经网络(RBFN)
全局逼近神经网络(BP)多网络所有隐含层、输出层变量进行赋权、认定阀值,学习速度慢,在实时预测中很难做到;
而径向基神经网络,是局部逼近,局部赋值与认定阀值,实际应用能力较强。
1、原理
径向基函数是一种类似母函数(简单函数),通过基函数来映射高维空间函数特征。就像是多项式可以通过x与x次方的方式,逼近某一函数一样。低维空间非线性可分的问题总可以映射高维空间(输入——隐含层是径向基层),使其在高维空间线性可分(隐含层——输出是线性函数层)。
输入——隐含层是径向基层(非线性),隐含层——输出是线性函数层。径向基层, 径向基神经元权重与输入层权重对比,相近的权重设定趋于1,偏离的权重设定趋于0(不起作用)。从而相近权重的输入变量激活了“隐含层——输出层”的权重。
RBFN看上去网络是全连接的,但实质上只有几个输入变量对指定的径向基层有贡献,所以是一个局部逼近的过程,训练速度比BP要快2-3个数量级。
RBFN比BP隐含层神经元要多,可以构成高维隐单元空间,只要隐含层神经元的数目足够多,就可以使输出层空间线性可分。
五、SPSS的R组件安装
使用PASW Statistics-R Essentials插件作为接口, 自动安装。
同时excel也支持了R语言的插件接入。[]
1、安装R组件[]
关于SPSS插件安装。
安装流程:
先安装 SPSS Statistics 21.0
再安装 SPSS Statistics Python Essentials 21.0(注意版本 2.7.x)
再安装 Scipy py 2.7 (务必对应 Python Essentials 版本 2.7.x) x64位必须用x64位的Scipy py 2.7 官方没有,第三方的可以。官方有第三方的链接。
再安装 Numpy py 2.7 (务必对应 Python Essentials 版本 2.7.x)x64位必须用x64位的Scipy py 2.7 官方没有,第三方的可以。官方有第三方的链接。
Scipy/Numpy官方地址: http://www.scipy.org/Download
再安装 PLS Extension Module 拷贝到位,将PLS.py和plscommand.xml放入SPSS安装文件夹下\extensions;或将PLS.py放入Python文件夹下Lib\site-packages,plscommand.xml放入\extensions
再安装 R 注意版本 2.14 (千万注意下载 R-2.14.2-win.zip )
后安装 SPSS Statistics R Essentials 安装时要找 R。
神经网络ANN——SPSS实现的更多相关文章
- 传统神经网络ANN训练算法总结
传统神经网络ANN训练算法总结 学习/训练算法分类 神经网络类型的不同,对应了不同类型的训练/学习算法.因而根据神经网络的分类,总结起来,传统神经网络的学习算法也可以主要分为以下三类: 1)前馈型神经 ...
- 传统神经网络ANN训练算法总结 参考 。 以后研究
http://blog.163.com/yuyang_tech/blog/static/21605008320146451352506/ 传统神经网络ANN训练算法总结 2014-07-04 17:1 ...
- 机器学习笔记之人工神经网络(ANN)
人工神经网络(ANN)提供了一种普遍而且实际的方法从样例中学习值为实数.离散值或向量函数.人工神经网络由一系列简单的单元相互连接构成,其中每个单元有一定数量的实值输入,并产生单一的实值输出. 上面是一 ...
- 【机器学习】人工神经网络ANN
神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用.人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发.硬件计算能力暴增.深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以 ...
- 人工神经网络--ANN
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...
- 机器学习(1)_R与神经网络之Neuralnet包
本篇博客将会介绍R中的一个神经网络算法包:Neuralnet,通过模拟一组数据,展现其在R中是如何使用,以及如何训练和预测.在介绍Neuranet之前,我们先简单介绍一下神经网络算法. 人工神经网络( ...
- OpenCV 之 神经网络 (一)
人工神经网络(ANN) 简称神经网络(NN),能模拟生物神经系统对真实物体所作出的交互反应,是由具有适应性的简单单元(称为神经元)组成的广泛并行互连网络. 1 神经元 1.1 M-P 神经元 如下 ...
- opencv 车牌字符分割 ANN网络识别字符
最近在复习OPENCV的知识,学习caffe的深度神经网络,正好想起以前做过的车牌识别项目,可以拿出来研究下 以前的环境是VS2013和OpenCV2.4.9,感觉OpenCV2.4.9是个经典版本啊 ...
- R语言 神经网络算法
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...
随机推荐
- 包装类和基本类型区别?(integer和int取值范围一样大)
1.声明方式不同,int不需要new .Integer需要new 2.性质上根本不同点:int是基本数据类型.Integer是引用数据类型,它有自己的属性,方法 3.存储位置和方式不同:int是存储在 ...
- LANMP系列教程之php编译安装CentOS7环境
前提:必须先安装好MySQL以及Apache 1.准备好源码包并配置好yum源,需要的源码包包括: libmcrypt-2.5.8-9.el6.x86_64.rpm libmcrypt-devel ...
- bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]
4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...
- 51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]
1584 加权约数和 题意:求\(\sum_{i=1}^{N} \sum_{j=1}^{N} {\max(i,j)\cdot \sigma(i\cdot j)}\) 多组数据\(n \le 10^6, ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- Android逆向之so的半自动化逆向
因为工作需要,转型干android逆向,有几个月了.不过对于so的逆向,任然停留在,难难难的阶段,虽然上次自己还是逆向了一个15k左右的小so文件,但是,那个基本是靠,一步一步跟代码,查看堆栈信息来自 ...
- User Parameters(用户参数)
User Parameters(用户参数),这个是整个zabbix的重点 Zabbix有很多内置的itemkey,但是这些key都是由Zabbix定义好的比较通用的监控项的实现, 如果我们自己想实 ...
- Linux 虚拟IP
虚拟IP Linux网卡上绑定另一个虚拟ip,即网卡上一个真实ip一个虚拟ip.当然通过这2个ip都可以连接到该主机. 实现原理主要是靠TCP/IP的ARP协议.因为ip地址只是一个逻辑 地址,在以太 ...
- SSE图像算法优化系列十七:一些图像处理中常用小过程的SSE实现。
在做图像处理的SSE优化时,也会经常遇到一些小的过程.数值优化等代码,本文分享一些个人收藏或实现的代码片段给大家. 一.快速求对数运算 对数运算在图像处理中也是个经常会遇到的过程,特备是在一些数据压缩 ...
- js收藏代码
js收藏代码~ 1. oncontextmenu="window.event.returnValue=false" 将彻底屏蔽鼠标右键 <table border oncon ...