前言

在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。

  随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。

为此我们需要先回顾下并发的本质:切换+保存状态

  cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长。

ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态

   一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。

  为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法:

#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
#串行执行
import time
def consumer(res):
'''任务1:接收数据,处理数据'''
pass def producer():
'''任务2:生产数据'''
res=[]
for i in range(10000000):
res.append(i)
return res start=time.time()
#串行执行
res=producer()
consumer(res) #写成consumer(producer())会降低执行效率
stop=time.time()
print(stop-start) #1.5536692142486572 #基于yield并发执行
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i) start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer() stop=time.time()
print(stop-start) #2.0272178649902344

单纯地切换反而会降低运行效率

二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i)
time.sleep(2) start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行 stop=time.time()
print(stop-start)

yield无法做到遇到io阻塞

  对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

  协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
#2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

协程介绍

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点如下:

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

Greenlet模块

安装 :pip3 install greenlet

from greenlet import greenlet

def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

greenlet实现状态切换

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

#顺序执行
import time
def f1():
res=1
for i in range(100000000):
res+=i def f2():
res=1
for i in range(100000000):
res*=i start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337 #切换
from greenlet import greenlet
import time
def f1():
res=1
for i in range(100000000):
res+=i
g2.switch() def f2():
res=1
for i in range(100000000):
res*=i
g1.switch() start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524

效率对比

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

Gevent模块

安装:pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

用法介绍

import gevent
def eat(name):
print('%s eat 1' %name)
gevent.sleep(2)
print('%s eat 2' %name) def play(name):
print('%s play 1' %name)
gevent.sleep(1)
print('%s play 2' %name) g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')

例:遇到io主动切换

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all()

import gevent
import time
def eat():
print('eat food 1')
time.sleep(2)
print('eat food 2') def play():
print('play 1')
time.sleep(1)
print('play 2') g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')

我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

from gevent import monkey;monkey.patch_all()
import threading
import gevent
import time
def eat():
print(threading.current_thread().getName())
print('eat food 1')
time.sleep(2)
print('eat food 2') def play():
print(threading.current_thread().getName())
print('play 1')
time.sleep(1)
print('play 2') g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')

查看threading.current_thread().getName()

Gevent之同步与异步

from gevent import spawn,joinall,monkey;monkey.patch_all()

import time
def task(pid):
"""
Some non-deterministic task
"""
time.sleep(0.5)
print('Task %s done' % pid) def synchronous(): # 同步
for i in range(10):
task(i) def asynchronous(): # 异步
g_l=[spawn(task,i) for i in range(10)]
joinall(g_l)
print('DONE') if __name__ == '__main__':
print('Synchronous:')
synchronous()
print('Asynchronous:')
asynchronous()
# 上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
# 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
# 后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。

Gevent之应用举例一

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == 200:
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
gevent.joinall([
gevent.spawn(get_page,'https://www.python.org/'),
gevent.spawn(get_page,'https://www.yahoo.com/'),
gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))

协程应用:爬虫

Gevent之应用举例二

通过gevent实现单线程下的socket并发

注意 :from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞

from gevent import monkey;monkey.patch_all()
from socket import *
import gevent #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket() def server(server_ip,port):
s=socket(AF_INET,SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
s.bind((server_ip,port))
s.listen(5)
while True:
conn,addr=s.accept()
gevent.spawn(talk,conn,addr) def talk(conn,addr):
try:
while True:
res=conn.recv(1024)
print('client %s:%s msg: %s' %(addr[0],addr[1],res))
conn.send(res.upper())
except Exception as e:
print(e)
finally:
conn.close() if __name__ == '__main__':
server('127.0.0.1',8080)

server

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))

client

from threading import Thread
from socket import *
import threading def client(server_ip,port):
c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
c.connect((server_ip,port)) count=0
while True:
c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
msg=c.recv(1024)
print(msg.decode('utf-8'))
count+=1
if __name__ == '__main__':
for i in range(500):
t=Thread(target=client,args=('127.0.0.1',8080))
t.start()

Python之协程的更多相关文章

  1. python gevent 协程

    简介 没有切换开销.因为子程序切换不是线程切换,而是由程序自身控制,没有线程切换的开销,因此执行效率高, 不需要锁机制.因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断 ...

  2. 深入理解Python中协程的应用机制: 使用纯Python来实现一个操作系统吧!!

    本文参考:http://www.dabeaz.com/coroutines/   作者:David Beazley 缘起: 本人最近在学习python的协程.偶然发现了David Beazley的co ...

  3. 关于Python的协程问题总结

    协程其实就是可以由程序自主控制的线程 在python里主要由yield 和yield from 控制,可以通过生成者消费者例子来理解协程 利用yield from 向生成器(协程)传送数据# 传统的生 ...

  4. {python之协程}一 引子 二 协程介绍 三 Greenlet 四 Gevent介绍 五 Gevent之同步与异步 六 Gevent之应用举例一 七 Gevent之应用举例二

    python之协程 阅读目录 一 引子 二 协程介绍 三 Greenlet 四 Gevent介绍 五 Gevent之同步与异步 六 Gevent之应用举例一 七 Gevent之应用举例二 一 引子 本 ...

  5. 【Python】协程

    协程,又称微线程,纤程.英文名Coroutine. 协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用. 子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在 ...

  6. Python之协程(coroutine)

    Python之协程(coroutine) 标签(空格分隔): Python进阶 coroutine和generator的区别 generator是数据的产生者.即它pull data 通过 itera ...

  7. python的协程和_IO操作

    协程Coroutine: 协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行. 注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点 ...

  8. python 3 协程函数

    python 3 协程函数 1:把函数的执行结果封装好__iter__和__next__,即得到一个迭代器 2:与return功能类似,都可以返回值,但不同的是,return只能返回一次值,而yiel ...

  9. Python之协程函数

    Python之协程函数 什么是协程函数:如果一个函数内部yield的使用方法是表达式形式的话,如x=yield,那么该函数成为协程函数. def eater(name): print('%s star ...

  10. 多任务-python实现-协程(2.1.11)

    多任务-python实现-协程(2.1.11) 23/100 发布文章 qq_26624329 @ 目录 1.概念 2.迭代器 1.概念 协程与子例程一样,协程(coroutine)也是一种程序组件. ...

随机推荐

  1. 关于win8的各种版本的区别

    Windows8.1 Professional VL  表示:专业版(大客户版,批量授权) Windows8.1 Multiple editions 表示:多合一版本(包含:标准版.专业版) 个人用户 ...

  2. object转字符串

    1.obj.tostring() obj为空时,抛异常. 2.convert.tostring(obj) obj为空时,返回null: 3.(string)obj obj为空时,返回null:obj不 ...

  3. 机器学习之类别不平衡问题 (2) —— ROC和PR曲线

    机器学习之类别不平衡问题 (1) -- 各种评估指标 机器学习之类别不平衡问题 (2) -- ROC和PR曲线 完整代码 ROC曲线和PR(Precision - Recall)曲线皆为类别不平衡问题 ...

  4. leetCode:461 汉明距离

    汉明距离 两个整数之间的汉明距离指的是这两个数字对应二进制位不同的位置的数目. 给出两个整数 x 和 y,计算它们之间的汉明距离. 思路: 当看到"对应二进制位不同的位置的数目"这 ...

  5. Maven-07: 插件的自定义绑定

    除了内置绑定以外,用户还能够自己选择将某个插件目标绑定到生命周期的某个阶段上,这种自定义绑定方式能让Maven项目在构建过程中执行更多更富特色的任务. 一个常见的例子是创建项目的源码jar包.内置的插 ...

  6. 基于Ubuntu的LNMP环境搭建

    装备的工具 Ubuntu16.04 , Xshell 使用Xshell链接到Ubuntu 使用xshell链接Ubuntu不是必须的,只是为了操作的方便,同时默认是你的Ubuntu已经安装好了 在Ub ...

  7. ~psd面试 求最长回文序列 DP求解

    链接:https://www.nowcoder.com/acm/contest/90/D来源:牛客网 掌握未来命运的女神 psd 师兄在拿了朝田诗乃的 buff 后决定去实习. 埃森哲公司注册成立于爱 ...

  8. 自己开发的 vue 滑动按钮组件 vue-better-slider

    写在前面的 这个人第一次尝试开发并发布一个 vue 的组件,该组件实现了类似 ios 手机淘宝客户端 -> 消息界面中消息的滑动删除功能等,如下为该组件的文档. 一个 Vue 的滑动按钮组件,有 ...

  9. php 类接口继承练习

    <?php /** * @hypo 接口的特性:接口中定义的所有方法都必须是public 接口的实现:一个接口可以使用implements操作符,类中必须实现接口中的所有方法,否则会报fatal ...

  10. Ubuntu16.0.4下搭建pycharm 2018.3.22

    一.首先安装Java jdk Java JDK有两个版本,一个开源版本Openjdk,还有一个Oracle官方版本jdk.下面记录在Ubuntu 16.04上安装Java JDK的步骤. 安装open ...