Description

给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。

Input

输入第一行包含一个整数T,表示数据组数。
第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。

Output

输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果。

Sample Input

2
1 4 5
2 4 5

Sample Output

2
5
//【样例说明】满足条件的2个序列为[4]和[5]。

题解

记得做过这样一道题:[Luogu 3902]Increasing

里面的思想就是将严格递增的序列第$i$个数减去$i$变成单调不下降的序列,来方便处理答案。

这里我们用相同的思想。由于原序列单调不下降,我们可以让第$i$个数加上一个$i$,使原序列单调递增。

这样取值范围就变成了$[L+1, R+n]$,一共$n+R-L$个数,这样对于长度为$n$的序列我们只要求$C^n _{n+R-L}$ = $C^{R-L} _{n+R-L}$。

然而到这里还没结束,题目要求的是长度为$[1, n]$。

简而言之就是求:

$$\sum _{i=1} ^n {C^{R-L} _{i+R-L}}$$

我们这里要想到这样一个公式:$C^m _n = C^{m-1} _{n-1}+C^m _{n-1}$,

我们再看上面这个式子,令$k = R-L$:

$ans=C_{1+k}^k+C_{2+k}^k+C_{3+k}^k+…+C_{n+k}^k$

  $=C_{1+k}^{1+k}-1+C_{1+k}^k+C_{2+k}^k+C_{3+k}^k+…+C_{n+k}^k$

  $=(C_{1+k}^{1+k}+C_{1+k}^k)+C_{2+k}^k+C_{3+k}^k+…+C_{n+k}^k-1$

  $=(C_{2+k}^{1+k}+C_{2+k}^k)+C_{3+k}^k+…+C_{n+k}^k-1$

  $=(C_{3+k}^{1+k}+C_{3+k}^k)+…+C_{n+k}^k-1$

  $……$

  $=C_{n+k+1}^{k+1}-1$。

求$C_{n+k+1}^{k+1}$用$Lucas$求就可以了。

 //It is made by Awson on 2017.10.7
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = 1e6+; int n, l, r;
int A[N+], B[N+]; int C(int n, int m) {
if (m > n) return ;
return (LL)A[n]*B[n-m]%N*B[m]%N;
}
int Lucas(int n, int m) {
if (!m) return ;
return (LL)C(n%N, m%N)*Lucas(n/N, m/N)%N;
}
void work() {
scanf("%d%d%d", &n, &l, &r);
printf("%d\n", (Lucas(n+r-l+, r-l+)-+N)%N);
}
int main() {
A[] = B[] = A[] = B[] = ;
for (int i = ; i <= N; i++)
B[i] = -(LL)(N/i)*B[N%i]%N;
for (int i = ; i <= N; i++)
A[i] = (LL)A[i-]*i%N,
B[i] = (LL)B[i-]*B[i]%N;
int t;
scanf("%d", &t);
while (t--)
work();
return ;
}

[BZOJ 4403]序列统计的更多相关文章

  1. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  2. BZOJ 4403: 序列统计 数学 lucas

    4403: 序列统计 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4403 Description 给定三个正整数N.L和R,统计长度在 ...

  3. bzoj 4403 序列统计 卢卡斯定理

    4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...

  4. BZOJ 4403 序列统计(Lucas)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4403 [题目大意] 给定三个正整数N.L和R,统计长度在1到N之间, 元素大小都在L到 ...

  5. bzoj 4403 序列统计——转化成组合数的思路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 先说说自己的想法吧. 设f[ i ][ j ]表示当前在倒数第 i 个位置,当前和后面 ...

  6. bzoj 4403: 序列统计【lucas+组合数学】

    首先,给一个单调不降序列的第i位+i,这样就变成了单调上升序列,设原来数据范围是(l,r),改过之后变成了(l+1,r+n) 在m个数里选长为n的一个单调上升序列的方案数为\( C_m^n \),也就 ...

  7. 【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R, ...

  8. BZOJ 3992 序列统计

    Description 小C有一个集合\(S\),里面的元素都是小于\(M\)的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为\(N\)的数列,数列中的每个数都属于集合\(S\). 小C用 ...

  9. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

随机推荐

  1. Beta敏捷冲刺每日报告——Day3

    1.情况简述 Beta阶段Scrum Meeting 敏捷开发起止时间 2017.11.4 00:00 -- 2017.11.5 00:00 讨论时间地点 2017.11.4 晚9:30,电话会议会议 ...

  2. 项目Alpha冲刺Day1

    一.会议照片 二.项目进展 1.今日安排 讨论完成项目的详细设计,并完成数据库的设计,学习powerDesigner的使用 2.问题困难 powerDesigner导出sql语句因为问题无法导入,特别 ...

  3. java第5章学习总结

    学号20145336 <Java程序设计>第5周学习总结 教材学习内容总结 try catch JVM会先尝试执行try区块中的内容,若发生错误且与catch后面的类型相符,则执行catc ...

  4. jquery基本使用和实例

    一.寻找元素 表单选择器 $(":input") //匹配所有 input, textarea, select 和 button 元素 $(":text") / ...

  5. tornado web高级开发项目

    抽屉官网:http://dig.chouti.com/ 一.配置(settings) settings = { 'template_path': 'views', #模板文件路径 'static_pa ...

  6. EasyUI DataGrid 实现单行/多行编辑功能

    要实现 EasyUI DataGrid 的可编辑很简单,在需要编辑的列添加 editor [编辑器]就可以了. 单行编辑 // 初始化数据列表 function initDatagrid() { $( ...

  7. 常见web攻击总结

    搞Web开发离不开安全这个话题,确保网站或者网页应用的安全性,是每个开发人员都应该了解的事.本篇主要简单介绍在Web领域几种常见的攻击手段及Java Web中的预防方式. XSS SQL注入 DDOS ...

  8. 源码解析Flask的配置文件

    在flask里,我们常在主文件中定义某些配置,比如: app.debug = True app.secret_key = 'helloworld!!' 实际上,flask中默认可以进行可选的配置项有很 ...

  9. Web系统Login拦截器

    所需要导入的包类:import org.springframework.web.servlet.HandleInterceptor;(拦截器要继承该类) public class loginInter ...

  10. Krajee插件的用法

      第一步: <!-- 必须引入 --> link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/boots ...