Description

题库链接

给定一棵 \(n\) 个节点的有根树,每个点有一个权值 \(val_i\) 。你需要选择尽可能多的节点,使得:对于任意两个点 \(i,j\) ,如果 \(i\) 在树上是 \(j\) 的祖先,那么 \(v_i>v_j\) 。请计算可选的最多的点数,注意这些点不必形成这棵树的一个连通子树。

\(1\leq n\leq 200000\)

Solution

记 \(f_{u,i}\) 表示在 \(u\) 节点的子树中选取的最大的点权为 \(i\) 的方案最大值。

那么转移就是枚举其子树中的状态,并在其它的子树中找到点权小于等于其的最大的方案值。

这样是 \(O(n^2)\) 的,考虑优化更新过程。

容易发现,转移时就是用一个前缀最大值更新一个后缀,用线段树维护,合并节点信息时启发式合并即可。

复杂度为 \(O(n\log_2^2 n)\) 的。

Code

#include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int N = 200000, inf = ~0u>>1; int n, val[N+5], f, b[N+5], tot, size[N+5], s[N+5][3], top;
vector<int>to[N+5];
struct Segment_tree {
int root[N+5], ch[N*50+5][2], maxn[N*50+5], tag[N*50+5], pos;
void pushdown(int o) {
tag[ch[o][0]] += tag[o], tag[ch[o][1]] += tag[o];
maxn[ch[o][0]] += tag[o], maxn[ch[o][1]] += tag[o];
tag[o] = 0;
}
void get(int o, int l, int r) {
if (!o) return;
if (l == r) {s[++top][0] = l, s[top][1] = maxn[o]; return; }
if (tag[o]) pushdown(o); int mid = (l+r)>>1;
get(ch[o][0], l, mid); get(ch[o][1], mid+1, r);
}
void update(int &o, int l, int r, int loc, int val) {
if (!o) o = ++pos; maxn[o] = max(maxn[o], val);
if (l == r) return;
if (tag[o]) pushdown(o); int mid = (l+r)>>1;
if (loc <= mid) update(ch[o][0], l, mid, loc, val);
else update(ch[o][1], mid+1, r, loc, val);
}
void modify(int o, int l, int r, int a, int b, int val) {
if (!o || a > b) return;
if (a <= l && r <= b) {tag[o] += val, maxn[o] += val; return; }
if (tag[o]) pushdown(o); int mid = (l+r)>>1;
if (a <= mid) modify(ch[o][0], l, mid, a, b, val);
if (b > mid) modify(ch[o][1], mid+1, r, a, b, val);
maxn[o] = 0;
if (ch[o][0]) maxn[o] = max(maxn[ch[o][0]], maxn[o]);
if (ch[o][1]) maxn[o] = max(maxn[ch[o][1]], maxn[o]);
}
int query(int o, int l, int r, int a, int b) {
if (!o || a > b) return 0;
if (a <= l && r <= b) return maxn[o];
if (tag[o]) pushdown(o); int mid = (l+r)>>1, c1 = 0, c2 = 0;
if (a <= mid) c1 = query(ch[o][0], l, mid, a, b);
if (b > mid) c2 = query(ch[o][1], mid+1, r, a, b);
return max(c1, c2);
}
}T; void dfs(int u) {
for (int i = 0, sz = to[u].size(), v; i < sz; i++) {
dfs(v = to[u][i]);
if (size[u] == 0) T.root[u] = T.root[v];
else {
int a = u, b = v;
if (size[a] > size[b]) swap(a, b);
top = 0; T.get(T.root[a], 1, tot);
for (int j = 1; j <= top; j++) {
s[j][2] = max(s[j-1][2], s[j][1]);
s[j][1] += T.query(T.root[b], 1, tot, 1, s[j][0]);
}
for (int j = 1; j <= top; j++) T.modify(T.root[b], 1, tot, s[j][0]+1, (j == top ? tot : s[j+1][0]), s[j][2]);
for (int j = 1; j <= top; j++) T.update(T.root[b], 1, tot, s[j][0], s[j][1]);
T.root[u] = T.root[b];
}
size[u] += size[v];
}
++size[u];
T.update(T.root[u], 1, tot, val[u], T.query(T.root[u], 1, tot, 1, val[u]-1)+1);
}
void work() {
scanf("%d", &n); b[++tot] = val[0] = inf;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &val[i], &f);
to[f].pb(i); b[++tot] = val[i];
}
sort(b+1, b+tot+1); tot = unique(b+1, b+tot+1)-b-1;
for (int i = 0; i <= n; i++) val[i] = lower_bound(b+1, b+tot+1, val[i])-b;
dfs(0); printf("%d\n", T.query(T.root[0], 1, tot, tot, tot)-1);
}
int main() {work(); return 0; }

[BZOJ 4919]大根堆的更多相关文章

  1. bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 599  Solved: 260[Submit][Stat ...

  2. bzoj 4919: [Lydsy六月月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  3. bzoj 1577: [Usaco2009 Feb]庙会捷运Fair Shuttle——小根堆+大根堆+贪心

    Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1& ...

  4. bzoj 5495: [2019省队联测]异或粽子【可持久化trie+大根堆】

    和bzoj4504差不多,就是换了个数据结构 像超级钢琴一样把五元组放进大根堆,每次取一个出来拆开,(d,l,r,p,v)表示右端点为d,左端点区间为(l,r),最大区间和值为v左端点在p上 关于怎么 ...

  5. bzoj 4504: K个串【大根堆+主席树】

    像超级钢琴一样把五元组放进大根堆,每次取一个出来拆开,(d,l,r,p,v)表示右端点为d,左端点区间为(l,r),最大区间和值为v左端点在p上 关于怎么快速求区间和,用可持久化线段树维护(主席树?) ...

  6. [Lydsy1706月赛]大根堆

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 358  Solved: 150[Submit][Stat ...

  7. Java实现堆排序(大根堆)

    堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键 ...

  8. bzoj4919 [Lydsy1706月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  9. BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

随机推荐

  1. django之urls系统

    Django的urls系统简介 Django 1.11版本 URLConf官方文档 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映 ...

  2. Leetcode 6——ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  3. 【iOS】OC-UTC日期字符串格式化

    NSLog(@"%@",[NSDate date]); NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init ...

  4. 201421123042 《Java程序设计》第8周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: 答:查找 ...

  5. HP DL380服务器RAID信息丢失数据恢复方法和数据恢复过程分享

    [数据恢复故障描述]    客户服务器属于HP品牌DL380系列,存储是由6块73GB SAS硬盘组成的RAID5,操作系统是WINDOWS 2003 SERVER,主要作为企业部门内部的文件服务器来 ...

  6. Angular.js 1++快速上手

    AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Goole所收购.是一款优秀的前端JS框架.AngularJS有着诸多特性,最为核心的是:MVC,撗块化,自动化双向数据绑 ...

  7. 推荐net开发cad入门阅读代码片段

    转载自  Cad人生  的博客 链接:http://www.cnblogs.com/cadlife/articles/2668158.html 内容粘贴如下,小伙伴们可以看看哦. using Syst ...

  8. 偶遇vue-awesome-swiper的坑

    最近用vue重构一个移动端的项目,碰到了不少坑,今天拿移动端最著名的轮播插件swiper为例来说,由于这个项目没用UI库,纯手写的样式,沿用老的插件,自然而然的选择了vue-awesome-swipe ...

  9. CentOS 7 使用yum安装出现错误

    CentOS 7 使用yum安装软件出现错误: Loaded plugins: fastestmirror 此错误信息可能是因为DNS配置错误,可以通过更改配置文件来解决: 1. 使用vi打开DNS的 ...

  10. idea 找不到classpath 为resource下的xml

    注入时不能自动找到在src/main/resources下的xml. @ContextConfiguration(locations = { "classpath:applicationCo ...