【机器学习】--鲁棒性调优之L1正则,L2正则
一、前述
鲁棒性调优就是让模型有更好的泛化能力和推广力。
二、具体原理
1、背景
第一个更好,因为当把测试集带入到这个模型里去。如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大,而第一个模型偏差不是很大。
2、目的
鲁棒性就是为了让w参数也就是模型变小,但不是很小。所以引出了 L1和L2正则。
L1和L2的使用就是让w参数减小的使用就是让w参数减小。
L1正则,L2正则的出现原因是为了推广模型的泛化能力。相当于一个惩罚系数。
3、具体使用
L1正则:Lasso Regression
L2正则:Ridge Regression
总结:
经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性。
L2正则会整体的把w变小。
L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度。
ElasticNet函数(把L1正则和L2正则联合一起):
总结:
1.默认情况下选用L2正则。
2.如若认为少数特征有用,可以用L1正则。
3.如若认为少数特征有用,但特征数大于样本数,则选择ElasticNet函数。
4、在保证正确率的情况下加上正则。
5、如果把lamda设置成0,就只看准确率。
6、如果把lamda设置大些,就看中推广能力。
7、L1倾向于使得w要么取1,要么取0 稀疏编码 可以降维
8、L2倾向于使得w整体偏小 岭回归 首选
4、图示
左边是L1正则+基本损失函数
右边是L2正则+基本损失函数
中间部分是圆心,损失函数最小,与正则函数相交,则既要满足基本函数,也要满足L1,L2正则,则损失函数增大了。
w1,w2等等与基本函数相交,则w1,w2都在[0,1]之间。
三、代码演示
代码一:L1正则
# L1正则
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) lasso_reg = Lasso(alpha=0.15)
lasso_reg.fit(X, y)
print(lasso_reg.predict(1.5)) sgd_reg = SGDRegressor(penalty='l1')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))
代码二:L2正则
# L2正则
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) #两种方式第一种岭回归
ridge_reg = Ridge(alpha=1, solver='auto')
ridge_reg.fit(X, y)
print(ridge_reg.predict(1.5))#预测1.5的值
#第二种 使用随机梯度下降中L2正则
sgd_reg = SGDRegressor(penalty='l2')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))
代码三:Elastic_Net函数
# elastic_net函数
import numpy as np
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
#两种方式实现Elastic_net
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X, y)
print(elastic_net.predict(1.5)) sgd_reg = SGDRegressor(penalty='elasticnet')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))
【机器学习】--鲁棒性调优之L1正则,L2正则的更多相关文章
- 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则
第十四节过拟合解决手段L1和L2正则 第十三节中, ...
- 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...
- 机器学习:模型泛化(L1、L2 和弹性网络)
一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力 ...
- L1与L2正则(转)
概念: L0范数表示向量中非零元素的个数:NP问题,但可以用L1近似代替. L1范数表示向量中每个元素绝对值的和: L1范数的解通常是稀疏性的,倾向于选择:1. 数目较少的一些非常大的值 2. 数目 ...
- 机器学习中规范化项:L1和L2
规范化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L ...
- 【笔记】简谈L1正则项L2正则和弹性网络
L1,L2,以及弹性网络 前情提要: 模型泛化与岭回归与LASSO 正则 ridge和lasso的后面添加的式子的格式上其实和MSE,MAE,以及欧拉距离和曼哈顿距离是非常像的 虽然应用场景不同,但是 ...
- L1和L2正则
https://blog.csdn.net/jinping_shi/article/details/52433975
- 【机器学习】--线性回归中L1正则和L2正则
一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 ...
- 机器学习(二十三)— L0、L1、L2正则化区别
1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题 1)实现参数的稀疏有什么好处吗? 一个好处是可以简化 ...
随机推荐
- Windows10 使用docker toolbox安装docker
一.介绍 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间 ...
- 关于python中phantomjs无法访问网页的处理
笔者使用的系统是linux ubuntu,最近在学习爬虫的过程中遇到了一个抓狂的问题,我尝试使用selenium加phantomjs来登陆网页的时候,Pythony一直提示selenium无法找到元素 ...
- apigateway-kong(一)简介及部署
时隔三年,本人重出江湖,哈哈哈 浏览之前写的博客,有些深度还不是太够.篇幅太短,并且很多专题没有坚持写下去,部分技(dai)术(ma)没有从业务中抽离出来,本人感觉好遗憾--为此,痛下决心,重拾博客, ...
- LuoguP4234_最小差值生成树_LCT
LuoguP4234_最小差值生成树_LCT 题意: 给出一个无向图,求最大的边权减最小的边权最小的一棵生成树. 分析: 可以把边权从大到小排序,然后类似魔法森林那样插入. 如果两点不连通,直接连上, ...
- ELK---日志分析系统
ELK就是一套完整的日志分析系统 ELK=Logstash+Elasticsearch+Kibana 统一官网https://www.elastic.co/products ELK模块说明 Logst ...
- oracle服务的一些问题,先发2个,以后慢慢添加~~
OracleOraDb11g_home1TNSLister服务启动后停止 解决办法: 1. 修改文件C:\app\zhuwei\product\11.1.0\db_1\NETWORK\ADMIN\li ...
- MYSQL——数据库存储引擎!
本人安装mysql版本为:mysql Ver 14.14 Distrib 5.7.18, for Win64 (x86_64),查看mysql的版本号方式:cmd-->mysql --vers ...
- #利用openCV裁脸
#利用openCV裁脸import cv2 def draw_rects(img, rects): for x, y, w, h in rects: cv2.rectangle(img, (x, y) ...
- Bootstrap优秀模板-INSPINIA.2.9.2
下载量最高的Bootstrap管理端模板,完美适配H5,.NET COre.MVC5.Ruby on Rails多种开发环境. 下面是官方介绍:INSPINIA Admin Theme is a pr ...
- 前端 SPA 单页应用数据统计解决方案 (ReactJS / VueJS)
前端 SPA 单页应用数据统计解决方案 (ReactJS / VueJS) 一.百度统计的代码: UV PV 统计方式可能存在问题 在 SPA 的前端项目中 数据统计,往往就是一个比较麻烦的事情,Re ...