【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
题面
题解
很显然,二分一个答案
考虑如何求小于等于这个数的非完全平方数倍数的个数
这个明显可以直接,莫比乌斯反演一下
然后这题就很简单了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 100000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+1000];
int mu[MAX+1000],pri[MAX+1000],tot;
int n,g[MAX+1000];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
}
long long Work(long long k)
{
long long ret=0,l=sqrt(k);
for(int i=1;i<=l;++i)ret+=1ll*mu[i]*k/(1ll*i*i);
return ret;
}
int main()
{
int T=read();
Get();
while(T--)
{
long long K=read();
long long l=1,r=1e10,ans=0;
while(l<=r)
{
long long mid=(l+r)>>1;
if(Work(mid)>=K)ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
}
return 0;
}
【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)的更多相关文章
- [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]
题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...
- [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用
完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日 ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- [bzoj2440]完全平方数(二分+mobius反演)
解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数...... 这道题用莫比乌斯的正向 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]
题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
随机推荐
- php读取access数据库
<?php //读取mdb数据库 $conn = new com("ADODB.Connection"); $connstr = "DRIVER={Microsof ...
- 使用PowerDesigner对NAME和COMMENT互相转换
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 在使用PowerDesigner对数据库进行概念模型和物理模型设计时 ...
- POJ - 1417 并查集+背包
思路:很简单的种类并查集,利用并查集可以将所有的人分成几个集合,每个集合又分为好人和坏人集合,直接进行背包dp判断有多少种方法可以在取了所有集合并且人数正好凑足p1个好人的方案.dp(i, j)表示前 ...
- string (KMP+期望DP)
Time Limit: 1000 ms Memory Limit: 256 MB Description 给定一个由且仅由字符 'H' , 'T' 构成的字符串$S$. 给定一个最初为空的字符串 ...
- 重装Win10系统的非常简单的操作教程
这是回到学校的第二天,准备搞一份实习证明,然而宿舍宽带停了,于是我来到了社团办公室,打开了其中一台电脑. 各位师弟师妹...你们也太厉害,把电脑折腾成这样...电脑装了各种各样的工具, Adobe P ...
- 模板语言变量,js变量,js自执行函数之前嵌套调用
1.模板语言变量 前端html页面中展示 {{ nodeIp }} 2.js变量引用模板语言变量 把模板语言变量传递给js,js去执行页面操作(变量的转换,只适用于字符串) var IP = &quo ...
- 特殊权限SUIG、SGID、SBIT
一.SetUID与SGID 只能用于二进制程序 执行者需要有该二进制程序的x权限 执行具有SUID权限的二进制程序,那么执行者将具有该二进制程序所有者的权限. 举例来说,/etc/passwd文件的权 ...
- openstack-ocata-计算服务4
一. 计算服务概览 使用OpenStack计算服务来托管和管理云计算系统.OpenStack计算服务是基础设施即服务(IaaS)系统的主要部分,模块主要由Python实现. OpenStack计算组件 ...
- Win10电脑经常自动掉线、自动断网的解决方法
近期一客户称自己使用电脑上网的时候,过一段时间莫名其妙的出现自动掉线.自动断网的情况,那么遇到这个问题该怎么办?下面装机之家分享一下Win10电脑经常自动掉线.自动断网的解决方法,以Win7系统为例. ...
- 如何在模拟器里体验微软HoloLens
众所周知,微软的HoloLens以及MR设备售价都比较高,这让不少感兴趣的朋友们望而却步,本篇教程将向大家介绍如何在模拟器里体验传说中的HoloLens. 1.需要准备的硬件: 智能手机一台(WP.A ...