Opencv(C++)实现二阶线性插值
#include<opencv2\opencv.hpp>
#include<iostream> using namespace cv;
using namespace std; bool enlargedImage(Mat &src, float k1, float k2);//k1,k2表示放大的倍数 void main()
{
Mat srcImage = imread("flower.png");
float k1 = 1.2, k2 = 2.5;
enlargedImage(srcImage, k1, k2);
} bool enlargedImage(Mat &src, float k1, float k2)
{
int height, width, theight, twidth;
int ia, ja;//新的坐标
height = src.rows;//图像的高
width = src.cols;//图像的宽
theight = round(height*k1);//扩大后图像的高
cout << theight << endl;
twidth = round(width*k2);//扩大后图像的宽
cout << twidth << endl;
Mat dstImage(theight, twidth, src.type(), Scalar(0));
//对得到的新图片进行填充 for (int i = 0; i < height; i++)
{
for (int j = 0; j < width - 1; j++)
{ ia = round(i*k1);
ja = round(j*k2);
//如果位于四个顶角
if (ia == 0 && ja == 0)//左顶角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == theight - 1 && ja == twidth - 1)//左下角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == 0 && ja == twidth - 1)//右顶角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == theight - 1 && ja == twidth - 1)//右下角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ja == twidth - 1)//第三种情况,最右边
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == 0)//第一种情况,最上面
{
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ja == 0)//第二种情况,最左边
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[2] = src.at<Vec3b>(i, j)[2];
} else if (ia == theight - 1)//第四种情况,最下面
{
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
//最后一种情况,位于中间的,将值赋给左上角的值
else
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
}
}
for (int i = 0; i < height; i++)
{
//单独考虑最右边
int j = width - 1;
ia = round(i*k1);
ja = round(j*k2);
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[2] = src.at<Vec3b>(i, j)[2]; } int a1, a2, b1, b2;//用来表示单线性插值中的上下左右中不为0的坐标
//利用单线性进行了行插值
for (int i = 0; i < theight; i++)
{
for (int j = 0; j < twidth; j++)
{
//首先考虑的满足单线性插值的 if (dstImage.at<Vec3b>(i, 0)[0] == 0 && dstImage.at<Vec3b>(i, 0)[1] == 0 && dstImage.at<Vec3b>(i, 0)[2] == 0)
{
continue;
} if (dstImage.at<Vec3b>(i, j)[0] == 0 && dstImage.at<Vec3b>(i, j)[1] == 0 && dstImage.at<Vec3b>(i, j)[2] == 0&& j>0 && j < twidth)
{
b1 = j - 1;
b2 = j + 1; while (dstImage.at<Vec3b>(i, b1)[0] == 0 && dstImage.at<Vec3b>(i, b1)[1] == 0 && dstImage.at<Vec3b>(i, b1)[2] == 0 && b1 >= 0)
{
b1--;
} while (dstImage.at<Vec3b>(i, b2)[0] == 0 && dstImage.at<Vec3b>(i, b2)[1] == 0 && dstImage.at<Vec3b>(i, b2)[2] == 0 && b2 <twidth)
{
b2++;
}
int sfrg0 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[0] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[0]);
int sfrg1 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[1] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[1]);
int sfrg2 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[2] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[2]);
dstImage.at<Vec3b>(i, j)[0] = saturate_cast<uchar>(sfrg0);
dstImage.at<Vec3b>(i, j)[1] = saturate_cast<uchar>(sfrg1);
dstImage.at<Vec3b>(i, j)[2] = saturate_cast<uchar>(sfrg2); }
}
}
//利用单线性对列进行插值 for (int j = 0; j < twidth; j++)
{
for (int i = 0; i < theight; i++)
{ if (dstImage.at<Vec3b>(i, j)[0] == 0 && dstImage.at<Vec3b>(i, j)[1] == 0 && dstImage.at<Vec3b>(i, j)[2] == 0 && i>0 && i < theight)
{
a1 = i - 1;
a2 = i + 1; while (dstImage.at<Vec3b>(a1, j)[0] == 0 && dstImage.at<Vec3b>(a1, j)[1] == 0 && dstImage.at<Vec3b>(a1, j)[2] == 0 && a1 >= 0)
{
a1--;
} while (dstImage.at<Vec3b>(a2, j)[0] == 0 && dstImage.at<Vec3b>(a2, j)[1] == 0 && dstImage.at<Vec3b>(a2, j)[2] == 0 && a2 < twidth)
{
a2++;
}
int s0 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[0] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[0]);
int s1 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[1] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[1]);
int s2 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[2] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[2]);
dstImage.at<Vec3b>(i, j)[0] = saturate_cast<uchar>(s0);
dstImage.at<Vec3b>(i, j)[1] = saturate_cast<uchar>(s1);
dstImage.at<Vec3b>(i, j)[2] = saturate_cast<uchar>(s2); }
}
} imshow("原图", src);
//namedWindow("扩大后的图像", CV_WINDOW_NORMAL);
imshow("扩大后的图像", dstImage); waitKey(0);
return true;
}
效果图:
Opencv(C++)实现二阶线性插值的更多相关文章
- opencv边缘检测的入门剖析(第七天)
---边缘检测概念理解--- 边缘检测的理解可以结合前面的内核,说到内核在图像中的应用还真是多,到现在为止学的对图像的操作都是核的操作,下面还有更神奇的! 想把边缘检测出来,从图像像素的角度去想,那就 ...
- opencv算法学习
1.改变图像的亮度和对比度: 算法介绍:对每一点像素值的r,g,b,值进行乘法和加法的运算. 代码使用: ; y < image.rows; y++ ) { ; x < image.col ...
- opencv的学习笔记5
总结原博文中的一些边缘检测算子和滤波器.(Canny算子, Sobel算子, Laplace算子以及Scharr滤波器) 首先,一般的边缘检测包括三个步骤: 1)滤波:边缘检测的算法主要是基于图像 ...
- OpenCV 之 边缘检测
上一篇 <OpenCV 之 图像平滑> 中,提到的图像平滑,从信号处理的角度来看,实际上是一种“低通滤波器”. 本篇中,数字图像的边缘,因为通常都是像素值变化剧烈的区域 (“高频”),故可 ...
- opencv 简单模糊和高斯模糊 cvSmooth
cv::Mat 是C++版OpenCV的新结构. cvSmooth() 是老版 C API. 没有把C接口与C + + 结合. 建议你们也可以花一些时间看一下介绍. 同样,你如果查看opencv/mo ...
- 【OpenCV】边缘检测:Sobel、拉普拉斯算子
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...
- OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...
- 学习OpenCV——Surf(特征点篇)&flann
Surf(Speed Up Robust Feature) Surf算法的原理 ...
- [OpenCV] Feature Extraction
特征检测 特征描述 特征匹配 特征跟踪 “不读白不读,读了还想读” 的一本基础书 低层次特征提取 阈值方法 1. 边缘检测 一阶检测算子 二阶检测算子 相位一致性(频域) 2. 角点检测(局部特征提取 ...
随机推荐
- win10 下安装mysql服务器社区版本mysql-5.7.22-winx64
下载 下载: http://dev.mysql.com/downloads/mysql/ 解压到C盘 添加环境变量path 添加环境变量 右击我的电脑->属性->高级系统设置->高级 ...
- cannot import name '_imaging' 与No module named PIL解决方法
今天学习廖雪峰的python 第三方模块pillow一章. 直接使用from PIL import Image 会报"No module named PIL",显然这是没有安装pi ...
- java之MVC开发模式
友情提醒:eclipse创建servlet不会帮你同步创建一个web.xml配置文件:所以建议使用MyEclipse! 1.View层(jsp) <form action="javaw ...
- C#文件和字节流的转换方法
1.读取文件,并转换为字节流 FileStream fs = new FileStream(filename,FileMode.Open,FileAccess.Read); byte[] infbyt ...
- UE4笔记:利用Widget设计一个切换材质功能
UE4引擎中的Widget蓝图是一个重要的工具,可用于场景中的页面叠加,镜头绑定,场景切换等多处地方,在这里笔者介绍一种利用控件蓝图和场景中物体进行信息交互的方法,直观的体现就是进行物体的材质切换. ...
- Java面试官最常问的volatile关键字
在Java相关的职位面试中,很多Java面试官都喜欢考察应聘者对Java并发的了解程度,以volatile关键字为切入点,往往会问到底,Java内存模型(JMM)和Java并发编程的一些特点都会被牵扯 ...
- 设计模式的征途—17.模板方法(Template Method)模式
在现实生活中,很多事情都需要经过几个步骤才能完成,例如请客吃饭,无论吃什么,一般都包含:点单.吃东西.买单等几个步骤,通常情况下这几个步骤的次序是:点单=>吃东西=>买单.在这3个步骤中, ...
- Hbuilder之开发Python
.开发之前,安装Python 3.6 在Mac上安装Python 如果你正在使用Mac,系统是OS X 10.8~10.10,那么系统自带的Python版本是2.7.要安装最新的Python 3.6, ...
- String的replaceAll()用法详解
使用replaceAll实现字符串替换,即把字符串某些字符全部替换成别的 // 将str中的所有数字替换为"数字"二字 String str = "abc123bcd45 ...
- mysqldump+系统计划任务定时备份MySql数据
MYSQL 数据库备份有很多种(cp.tar.lvm2.mysqldump.xtarbackup)等等,具体使用哪一个还要看你的数据规模.下面给出一个表 #摘自<学会用各种姿态备份Mysql数据 ...