bzoj 2005 能量采集 莫比乌斯反演
我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1)
化简得2×∑ni=1∑mj=1gcd(i,j)−n×m
所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可
∑ni=1∑mj=1gcd(i,j)
=∑ni=1∑mj=1∑d|gcd(i,j)ϕ(d)
=∑min(n,m)d=1ϕ(d)×⌊nd⌋×⌊md⌋
预处理ϕ的前缀和,下底分组即可
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<ctime>
#define N 100500
using namespace std;
int prime[N],tot,n,m;
long long phi[N],ans;
bool bo[N];
void init(){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!bo[i]){
prime[++tot]=i;
phi[i]=i-1;
}
for(int j=1;j<=tot&&i*prime[j]<=n;j++){
bo[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<=n;i++)phi[i]+=phi[i-1];
}
int main(){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
init();
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(long long)(phi[j]-phi[i-1])*(n/i)*(m/i);
}
ans*=2; ans-=(long long)n*m;
printf("%lld\n",ans);
return 0;
}
bzoj 2005 能量采集 莫比乌斯反演的更多相关文章
- BZOJ 2005 能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- luogu1447 [NOI2010]能量采集 莫比乌斯反演
link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]
题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...
- BZOJ 2005 能量采集(容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2005 题意:给定n和m,求 思路:本题主要是解决对于给定的t,有多少对(i,j)满足x= ...
- bzoj 2820 / SPOJ PGCD 莫比乌斯反演
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...
- bzoj2005 能量采集 莫比乌斯或者普通容斥
/** 题目:bzoj2005 能量采集 链接:https://vjudge.net/contest/178455#problem/F 题意:栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可 ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
随机推荐
- WebService学习--(一)webservice相关概念
一.序言 大家或多或少都听过 WebService(Web服务),有一段时间很多计算机期刊.书籍和网站都大肆的提及和宣传WebService技术,其中不乏很多吹嘘和做广告的成 分.但是不得不承认的是W ...
- 新手入门vue 使用vue-cli创建项目
本文是针对对于完全没有了解过vue 和npm,连运行环境和项目构建的都不会的小白,对于前端老司机的就不用看了,浪费时间. 使用npm 与vue-cli 构建vue 项目 第一步:安装运行环境(node ...
- Solr 新增、更新、删除索引
solr-admin新增索引 [索引中无则新增,有则更新] 1.在doc标签和field标签中增加权重(boost),增加权重后,可以在搜索的时候做权重过滤. <add> <doc ...
- 进程间通信——IPC之共享内存
共享内存是三个IPC机制中的一个.它允许两个不相关的进程访问同一个逻辑内存.共享内存是在两个正在进行的进程之间传递数据的一种非常有效的方式. 大多数的共享内存的实现,都把由不同进程之间共享 ...
- IIR滤波器软件实现(Matlab+C++)
使用C++来写一个IIR滤波器 我们首先要在MATLAB中设计一个IIR滤波器,并生成一个头文件,这个头文件中反映了IIR滤波器的频率响应特性 理论支持 IIR滤波叫做递归滤波器,它是一种具有反馈的滤 ...
- mongodb备份还原脚本
同步 echo off ,%-%date:~,%-%date:~,% set bak_dir=mongo_na_world_svn2win_%time_dir% set fromdb=db_erago ...
- 推荐免费小巧图片大小处理工具--Image Resizer for Windows
开源免费小巧,项目地址:http://imageresizer.codeplex.com/
- JSPWiki安装配置及FCKEditor的集成
版本:JSPWiki-2.8.2 FCKeditor_2.6.3 安装方法我参照:http://doc.jspwiki.org/2.4/wiki/InstallingJSPWiki FCKEd ...
- PyQt IDE 环境搭建
Eric的安装 1.按照目前pyqt5的要求安装了python3的最新版 2 pip3 install PyQt5 3. pip3 install QScintilla 4.download eric ...
- JS中的top是什么?
<iframe/>或者<frame>里面用主页面的东西,就是top.xxx如:<script> function func(){ ... };</script ...