Description

Solution

把输入的 \(n\) 个二进制数看作一个大小为 \(n*m\) 的矩阵

把每一列压成一个二进制数,其中最高位是最下面的元素

然后就有了 \(m\) 个二进制数 \(b_i\),然后逐位考虑

我们把操作序列也变成一个二进制数 \(x\),\(1\) 为 \(\&\),\(0\) 为 \(|\)

那么第 \(i\) 位最后的结果为 \(1\) 当且仅当 \(x<b_i\) (注意最高位是最下面的元素)

然后就是确定 \(x\) 的取值范围了

如果我们把 \(b\) 数组从大到小排序,如果确定了 \(x\) ,那么就相当与把 \(b\) 从某个地方断开,前面的二进制位变成 \(1\),后面的变成 \(0\)

考虑每一个询问: \(r_i\)

首先满足条件的情况一定是:在 \(b\) 数组中,\(r\) 中所有的 \(1\) 位都在 \(0\) 位前面

找到断点 \(i\) 之后,答案就是 \(b[i-1]-b[i]\) 了

#include<bits/stdc++.h>
using namespace std;
const int N=5010,mod=1000000007;
int n,m,Q,p[N];char s[N];
struct data{
bool b[1010];int id;
inline bool operator <(const data &p)const{
for(int i=n;i>=1;i--)
if(b[i]!=p.b[i])return b[i]>p.b[i];
return id<p.id;
}
}a[N];
bool w[N];
inline int putans(int x){
int ret=0,t=0;
for(int i=n;i>=1;i--)
ret=(1ll*ret*2+a[x-1].b[i])%mod;
for(int i=n;i>=1;i--)
t=(1ll*t*2+a[x].b[i])%mod;
ret=(ret-t+mod)%mod;
return ret+(x==1);
}
int main(){
freopen("hunt.in","r",stdin);
freopen("hunt.out","w",stdout);
cin>>n>>m>>Q;
for(int i=1;i<=n;i++){
scanf("%s",s+1);
for(int j=1;j<=m;j++)a[j].b[i]=s[j]-'0';
}
for(int i=1;i<=m;i++)a[i].id=i;
sort(a+1,a+m+1);
for(int i=1;i<=m;i++)p[a[i].id]=i;
for(int i=1;i<=n;i++)a[0].b[i]=1;
while(Q--){
scanf("%s",s+1);
for(int i=1;i<=m;i++)w[p[i]]=s[i]-'0';
bool t=0,flag=0;
for(int i=1;i<=m;i++){
if(t && w[i]){flag=1;break;}
t=w[i]^1;
}
if(flag)puts("0");
else{
for(int i=1;i<=m+1;i++){
if(w[i]==0){
printf("%d\n",putans(i));
break;
}
}
}
}
return 0;
}

bzoj 5285: [Hnoi2018]寻宝游戏的更多相关文章

  1. 5285: [Hnoi2018]寻宝游戏

    5285: [Hnoi2018]寻宝游戏 链接 分析: 从下面依次确定运算符号,然后在确定的过程中,需要确定的位数会逐渐减少.比如最后有一个1,如果在从下往上确定了一个or 1,那么再往前可以随便选了 ...

  2. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  3. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  4. BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)

    BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...

  5. 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  6. bzoj 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  7. BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  8. [BZOJ 3991][SDOI2015]寻宝游戏(dfs序)

    题面 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...

  9. bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...

随机推荐

  1. alpha-咸鱼冲刺day3

    一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 今天把数据库的表给建好了,学长那边把登陆跟注册页面也做好了(纯页面,html5+css的那种) 四,问题困难 日常啥都不会,百度 ...

  2. 项目Alpha冲刺Day12

    一.会议照片 二.项目进展 1.今日安排 修复全局的日期转换问题,完成用户所有相关的模块,对全局的异常处理做优化.其他模块进行一部分实现. 2.问题困难 全局异常处理后发现没有进行按照链进行下去,造成 ...

  3. 张金禹 C语言--第0次作业

    1:在填报专业的时候,我也犹豫了很久,但最后还是选择了计算机专业.因为在上大学之前我就对编程.设计等有浓厚的兴趣,但繁重的高中学习任务使我没有过多的去关注,所以我选择了计算机专业去培养我在这方面的兴趣 ...

  4. scrapy 模拟登陆

    import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...

  5. python自动发邮件

    from email.header import Header from email.mime.text import MIMEText from email.utils import parsead ...

  6. Windows Server2012 故障转移集群之动态仲裁(Dynamic Quorum)

    本篇文章主要介绍Windows2012的故障转移集群一个新功能“动态仲裁”,默认该功能是开启的: 动态仲裁能在当前群集投票出现分歧的情况下取消某些节点的投票权限,比如偶数个节点的群集环境.仲裁见证和动 ...

  7. Python 简单聊天室

    #coding=utf-8 from socket import * from threading import Thread import time udpSocket = socket(AF_IN ...

  8. Win10安装Ubuntu14.04.5双系统(显示器为DP接口)

    系统安装主要参考了这篇博文Win10+Ubuntu17.04双系统安装,不再重复. 重点说说DP接口的事,如果主机有VGA接口的话可以到此为止了,如果只有DP接口的话可以参考以下内容. 一.Ubunt ...

  9. 新概念英语(1-137)A pleasant dream

    Lesson 137 A pleasant dream 美好的梦 Listen to the tape then answer this question. What would Julie like ...

  10. SpringCloud用户自定义配置信息的定义和查看

    一.概念 在SpringCloud项目中,用户自己定义的配置信息也可以放在application.*,需要以 info打头,以便使用公用基础设施 /info 查看! 本文讲解基于 ConfigServ ...