●POJ poj 2112 Optimal Milking
●题目大意:
给出K个挤奶机器(编号1~K),C头牛(编号K+1~K+C)(机器和牛各在不同的地方)和每台机器最多可M头牛挤奶;
然后以邻接矩阵告诉各点间的直接距离(不同的地方间若直接距离等于0,则表明没有直接连路)。
目的是要让每一头牛都要去一台机器处被挤奶,要使行走路程最大的牛的路程最小。goto
●题解:
刚拿到题时很Mengbi,搞了一段时间后才发现每个点可以去多次……
因为点数只有不超过230个,那么我们可以求出每个牛到每个机器的最短距离(自然是floyd嘛),那么问题变成了将牛分配至机器,不同的牛分配到不同的机器有不同的代价(即计算出的最短距离),且每个机器的能接受的牛的数量有限,要求出最大代价的最小值(明摆着套路二分答案嘛)。
至此,思路渐渐清晰,先floyd求每个牛到每个机器的最短距离,然后二分答案(lim 表示),开始建图,跑网络流;
建图&网络流(对于每一个二分出来的lim):
1、源点 s 向各头牛连一条容量为1的有向边;
2、枚举牛和机器的”组合“,若 A 牛到 B 机器的(最短)距离小于 lim ,则从 A 向 B 连一条容量为 inf(只要容量大于0即可) 的有向边;
3、从各机器向源点 E 连一条容量为1的有边;
4、用最大流求图中的流量,若流量等于牛的数量,就,咳咳.…..
总:floyd+二分+最大流
#include<cstdio>
#include<cstring>
#include<iostream>
#define oo (0x3f3f3f3f)
using namespace std;
struct edge{
int to,next,cap;
}e[250*250*2];
int mp[250][250],head[250],q[250],d[250];
int k,c,m,l=+oo,r=-1,mid,ent;
void add(int u,int v,int cap){
e[ent]=(edge){v,head[u],cap};head[u]=ent++;
e[ent]=(edge){u,head[v],0};head[v]=ent++;
}
bool bfs(int s,int t)
{
int ll=0,rr=1; q[rr]=s;
memset(d,0,sizeof(d)); d[s]=1;
while(ll<rr)
{
ll++; int u=q[ll];
for(int i=head[u];~i;i=e[i].next) if(e[i].cap>0)
{
int v=e[i].to; if(d[v]) continue;
d[v]=d[u]+1; q[++rr]=v;
}
}
return d[t];
}
int dfs(int u,int t,int flow)
{
if(u==t) return flow; int flowout=0,f;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
if(d[v]!=d[u]+1) continue;
f=dfs(v,t,min(flow,e[i].cap));
flowout+=f; flow-=f;
e[i].cap-=f; e[i^1].cap+=f;
if(flow==0) break;
}
return flowout;
}
bool check(int s,int t)
{
memset(head,-1,sizeof(head));ent=0;
for(int i=k+1;i<=k+c;i++)
for(int j=1;j<=k;j++)
if(mp[i][j]>-1&&mp[i][j]<=mid) add(i,j,1);
for(int i=k+1;i<=k+c;i++) add(s,i,1);
for(int i=1;i<=k;i++) add(i,t,m);
int flow=0;
while(bfs(s,t)) flow+=dfs(s,t,+oo);
return flow==c;
}
void solve(int s,int t)
{
int ans=0;
while(l<=r)
{
mid=(l+r)/2;
if(check(s,t)) ans=mid,r=mid-1; else l=mid+1;
}
printf("%d",ans);
}
void floyd()
{
for(int o=1;o<=k+c;o++)
for(int i=1;i<=k+c;i++)
for(int j=1;j<=k+c;j++)
if(mp[i][o]>-1&&mp[o][j]>-1&&(mp[i][j]==-1||mp[i][o]+mp[o][j]<mp[i][j]))
mp[i][j]=mp[i][o]+mp[o][j];
for(int i=k+1;i<=k+c;i++)
for(int j=1;j<=k;j++)
l=0,r=max(r,mp[i][j]);
}
int main()
{
scanf("%d%d%d",&k,&c,&m);
memset(mp,-1,sizeof(mp));
for(int i=1;i<=k+c;i++) for(int j=1;j<=k+c;j++)
{
scanf("%d",&mp[i][j]);
if(mp[i][j]==0&&i!=j) mp[i][j]=-1;
}
floyd(); solve(0,k+c+1);
return 0;
}
●POJ poj 2112 Optimal Milking的更多相关文章
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Optimal Milking Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ 2112 Optimal Milking(最大流)
题目链接:http://poj.org/problem?id=2112 Description FJ has moved his K (1 <= K <= 30) milking mach ...
- POJ 2112 - Optimal Milking
原题地址:http://poj.org/problem?id=2112 题目大意:有K个挤奶机(标号为1 ~ K)和C头奶牛(编号为K + 1 ~ K + C),以邻接矩阵的方式给出它们两两之间的距离 ...
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ 2112 Optimal Milking(二分+最大流)
http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...
- POJ 2112 Optimal Milking(二分图匹配)
[题目链接] http://poj.org/problem?id=2112 [题目大意] 给出一些挤奶器,每台只能供给M头牛用,牛和挤奶器之间有一定的距离 现在要让每头牛都挤奶,同时最小化牛到挤奶器的 ...
随机推荐
- 《团队-OldNote-项目总结》
我们小组做的是手机便签的app---OldNote 最开始我们想解决普通手机便签无法进行语音和照片的备忘这一问题,但是由于没有做过拍照和录音的经验怕由于技术原因无法达成目的,就没敢写在需求分析中.当完 ...
- Alpha冲刺No.10
一.站立式会议 我们的阿尔法冲刺也基本宣告血崩,虽然很多功能已经实现,但是并没有串联在一起,好在这周不需要上课,我们也能好好睡一觉 实现手机的定位系统 细化界面设计 解决数据库和软件交互的一些问题 二 ...
- Week1绪论--抽象数据类型
一.作业题目 1.构造有理数T,元素e1,e2分别被赋以分子.分母值 2.销毁有理数T 3.用e(引用类型参数)返回有理数T的分子或分母,当入参i为1时返回分子, i为2是返回分母. 4.将有理数T的 ...
- hibernate框架学习错误集锦-org.springframework.dao.InvalidDataAccessApiUsageException: Write operations are not allowed in read-only mode (FlushMode.MANUAL)
最近学习ssh框架,总是出现这问题,后查证是没有开启事务. 如果采用注解方式,直接在业务层加@Transactional 并引入import org.springframework.transacti ...
- Alpha冲刺Day12
Alpha冲刺Day12 一:站立式会议 今日安排: 由黄腾飞和张梨贤继续完成政府人员模块下的风险管控子模块下的分级统计展示 由林静继续完成企业注册模块 由周静平完成登录页面模块 二:实际项目进展 人 ...
- 理解Python迭代对象、迭代器、生成器
作者:zhijun liu链接:https://zhuanlan.zhihu.com/p/24376869来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本文源自RQ作 ...
- Beta冲刺Day6
项目进展 李明皇 今天解决的进度 进行前后端联动调试 明天安排 完善程序运行逻辑 林翔 今天解决的进度 服务器端发布消息,删除消息,检索消息,个人发布的action 明天安排 图片功能遇到问题,微信小 ...
- C#网页提交html代码报错
1.在页面顶部 Page 标签加入属性 ValidateRequest="false" 2.如果开发环境是4.0及以上,在web.config加入 <system.web&g ...
- django报错Manager isn't accessible via UserInfo instances
出现这种错误是因为调用模型对象时使用了变量名,而不是对象名(模型类),例如: user = UserInfo()user_li = user.objects.filter(uname=username ...
- 【Learning】 多项式的相关计算
约定的记号 对于一个多项式\(A(x)\),若其最高次系数不为零的项是\(x^k\),则该多项式的次数为\(k\). 记为\(deg(A)=k\). 对于\(x\in(k,+ \infty)\),称\ ...