题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2007

题解:

网络流、最小割、对偶图

奇妙的题 ~

种种原因导致了高度要么为 0,要么为 1 (1),然后 0,1区域是分离的 (2)。
对于 (2) 是显然的,因为如果在一片 1的区域中出现了一个 0,那么把 0改为 1一定会更优。
而对于 (1) ,就只有感性一点理解了(没看到一个比较理性的讲解)。
    由于左上角为 0,右下角为 1,所以总会存在有上坡路。
    那么为了使上坡导致的体力消耗最少,我们会去选择一条流量小(流量设为w)的路从 0直接爬向 1,
    这样才是最优的。
    如果此时不一次性爬上去,而是爬部分高度 h (0<h<1) 那么以后也必然会爬到 1,
    但那时流量的大小就不如之前的 w小了,所以总的消耗是大于在流量小的边一次性爬上 1的。

所以至此,求出左上角 S ->右下角 T 的最小割便是答案了。
(这条割把图分为了 0部 和 1部)

但是跑网络流会超时。
由于图的特殊性——非常规则,
所以就把中间的各个区域抽象成一个个的点,
图的左下的空白区域看成是 S点,
图的右上的空白区域看成是 T点,
然后按照("左手定则",诶呀,管的怎么建的,符合题意就可以了)一定的方向把原图的边变为与它垂直的边(边权不变),连接新的那些点,
最后跑一个更加高效的最短路算法,求出S->T的最短路就是答案了。
(可以感性理解为是在模拟去割那张图)。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 300000
#define MAXM 3000000
#define ll long long
using namespace std;
struct Edge{
ll to[MAXM],val[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){ent=2;}//记得初始化
void Adde(ll u,ll v,ll w){
to[ent]=v; val[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
}
ll Next(ll i,bool type){
return type?head[i]:nxt[i];
}
}E;
ll dis[MAXN];
ll N;
ll idx(ll i,ll j){
return (i-1)*N+j;
}
ll Dijkstra(ll S,ll T){
typedef pair<ll,ll>pii;
static bool vis[MAXN];
memset(vis,0,sizeof(vis));
memset(dis,0x3f,sizeof(dis)); ll u,v;
priority_queue<pii,vector<pii>,greater<pii> >q; q.push(make_pair(0,S)); dis[S]=0;
while(!q.empty()){
u=q.top().second; q.pop();
if(vis[u]) continue; vis[u]=1;
for(ll i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(vis[v])continue;
if(dis[v]<=dis[u]+E.val[i]) continue;
dis[v]=dis[u]+E.val[i];
q.push(make_pair(dis[v],v));
}
}
return dis[T];
}
int main()
{
freopen("altitude.in","r",stdin);freopen("altitude.out","w",stdout);
E.Init(); ll S,T;
scanf("%lld",&N);
S=N*N+1; T=S+1;
for(ll i=1,x,from,to;i<=N+1;i++)
for(ll j=1;j<=N;j++){
scanf("%lld",&x);
from=i==N+1?S:idx(i,j);
to=i==1?T:idx(i-1,j);
E.Adde(from,to,x);
}
for(ll i=1,x,from,to;i<=N;i++)
for(ll j=1;j<=N+1;j++){
scanf("%lld",&x);
from=j==1?S:idx(i,j-1);
to=j==N+1?T:idx(i,j);
E.Adde(from,to,x);
}
for(ll i=1,x,from,to;i<=N+1;i++)
for(ll j=1;j<=N;j++){
scanf("%lld",&x);
from=i==1?T:idx(i-1,j);
to=i==N+1?S:idx(i,j);
E.Adde(from,to,x);
}
for(ll i=1,x,from,to;i<=N;i++)
for(ll j=1;j<=N+1;j++){
scanf("%lld",&x);
from=j==N+1?T:idx(i,j);
to=j==1?S:idx(i,j-1);
E.Adde(from,to,x);
}
ll ans=Dijkstra(S,T);
printf("%lld",ans);
return 0;
}

●BZOJ 2007 NOI 2010 海拔的更多相关文章

  1. [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)

    [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区 ...

  2. NOI 2010 海拔(最小割转最短路)

    题意 https://www.lydsy.com/JudgeOnline/problem.php?id=2007 思路 首先可以发现一个结论,每个位置的海拔只有能是 \(0\) 和 \(1\) ,然后 ...

  3. NOI 2010 海拔 ——平面图转对偶图

    [题目分析] 可以知道,所有的海拔是0或1 最小割转最短路,就可以啦 SPFA被卡,只能换DIJ [代码] #include <cstdio> #include <cstring&g ...

  4. ●BZOJ 2006 NOI 2010 超级钢琴

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...

  5. [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...

  6. ●BZOJ 2005 NOI 2010 能量采集

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: 一个带有容斥思想的递推.%%% 首先,对于一个点 (x,y) 在路径 (0,0 ...

  7. bzoj 2005 NOI 2010 能量采集

    我们发现对于一个点(x,y),与(0,0)连线上的点数是gcd(x,y)-1 那么这个点的答案就是2*gcd(x,y)-1,那么最后的答案就是所有点 的gcd值*2-n*m,那么问题转化成了求每个点的 ...

  8. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  9. BZOJ 2007 海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 思路: 显然海拔是一片0,另一片1,答案就是01的分界线的流量. 本题中的图是平面图,所以求最 ...

随机推荐

  1. 项目Alpha冲刺Day8

    一.会议照片 二.项目进展 1.今日安排 前端界面框架基本完成,剩下侧边栏与权限相关部分未完成.前端路由异常拦截完成.项目结构与开发流程规定完成.后台开发规定小变更. 2.问题困难 组件的拆分与否和组 ...

  2. Linux下I/O多路转接之epoll(绝对经典)

    epoll 关于Linux下I/O多路转接之epoll函数,什么返回值,什么参数,我不想再多的解释,您不想移驾,我给你移来: http://blog.csdn.net/colder2008/artic ...

  3. TSP-旅行商问题

    #include <iostream> #include <vector> #include <algorithm> using namespace std; in ...

  4. 从PRISM开始学WPF(五)MVVM(一)ViewModel?

    从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...

  5. 解决java.lang.NoSuchMethodError:org.joda.time.DateTime.withTimeAtStartOfDay() Lorg/joda/time/DateTime

    问题:项目放在weblogic运行,报错 java.lang.NoSuchMethodError: org.joda.time.DateTime.withTimeAtStartOfDay()Lorg/ ...

  6. LeetCode & Q1-Two Sum-Easy

    Array Hash Table Question Given an array of integers, return indices of the two numbers such that th ...

  7. ArrayList源码学习----JDK1.7

    什么是ArrayList? ArrayList是存储一组数据的集合,底层也是基于数组的方式实现,实际上也是对数组元素的增删改查:它的主要特点是: 有序:(基于数组实现) 随机访问速度快:(进行随机访问 ...

  8. 阿里云API网关(12)为员工创建子账号,实现分权管理API:使用RAM管理API

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  9. python 模拟浏览器登陆coursera

    import requests import random import string def randomString(length): return ''.join(random.choice(s ...

  10. SpringBoot 分布式session

    SpringBoot 分布式session实现 1. 什么是分布式session 在集群环境中,不得不考虑的一个问题是用户访问产生的session如何处理.如过不做任何处理,用户将出现频繁俸禄的现象, ...