FallDream dalao找的插值练习题

题目大意:给定n,k,求Σi^k (i=1~n),对1e9+7取模。(n<=10^9,k<=10^6)

思路:令f(n)=Σi^k (i=1~n),则有f(n)-f(n-1)=n^k,说明f(n)的差分是n的k次多项式,则所求f(n)为n的k+1次多项式,利用拉格朗日插值公式,我们暴力计算n=0~k+1时的答案,代入公式,利用预处理的信息加速计算,总复杂度O(klogMOD)。

#include<cstdio>
#define MOD 1000000007
int pw(int x,int y)
{
int r=;
for(;y;y>>=,x=1LL*x*x%MOD)if(y&)r=1LL*r*x%MOD;
return r;
}
#define MK 1000000
int z[MK+];
inline int mod(int a){return a>=MOD?a-MOD:a;}
int main()
{
int n,k,i,ans=,s0=,s1=;
scanf("%d%d",&n,&k);
for(i=;i++<=k;)z[i]=mod(z[i-]+pw(i,k));
if(n<=++k)return printf("%d",z[n]),;
for(i=;i<=k;++i)s0=1LL*s0*(n-i)%MOD;
for(i=;i<=k;++i)s1=1LL*s1*(MOD-i)%MOD;
for(i=;i<=k;++i)
ans=(ans+1LL*z[i]*s0%MOD*pw(n-i,MOD-)%MOD*pw(s1,MOD-))%MOD,
s1=1LL*s1*pw(MOD-k+i,MOD-)%MOD*(i+)%MOD;
printf("%d",ans);
}

附:

拉格朗日插值公式:

牛顿插值公式:

[Educational Codeforces Round 7]F. The Sum of the k-th Powers的更多相关文章

  1. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

  2. 【Educational Codeforces Round 37 F】SUM and REPLACE

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 那个D函数它的下降速度是很快的. 也就是说到最后他会很快的变成2或者1 而D(2)==2,D(1)=1 也就是说,几次操作过后很多数 ...

  3. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  4. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  5. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  6. Educational Codeforces Round 26 F. Prefix Sums 二分,组合数

    题目链接:http://codeforces.com/contest/837/problem/F 题意:如题QAQ 解法:参考题解博客:http://www.cnblogs.com/FxxL/p/72 ...

  7. Educational Codeforces Round 14 - F (codeforces 691F)

    题目链接:http://codeforces.com/problemset/problem/691/F 题目大意:给定n个数,再给m个询问,每个询问给一个p,求n个数中有多少对数的乘积≥p 数据范围: ...

  8. Educational Codeforces Round 1 A. Tricky Sum 暴力

    A. Tricky Sum Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/598/problem ...

  9. Educational Codeforces Round 23 F. MEX Queries 离散化+线段树

    F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

随机推荐

  1. New UWP Community Toolkit - AdaptiveGridView

    概述 UWP Community Toolkit  中有一个自适应的 GridView 控件 - AdaptiveGridView,本篇我们结合代码详细讲解  AdaptiveGridView 的实现 ...

  2. 关于网页设计的css+html相对定位和决定定位的理解

    css中有很多定位,其中最重要的是相对定位和绝对定位: 定位很重要,不搞好,网页就会很乱,显示的完全不是自己想要的效果,自己必须掌握: 首先说一个重要的结论:绝对定位,是不占位置的,总是相对离自己最近 ...

  3. node框架express

    见识到原生nodeJs服务器的恶心后,我们来用下简单好用的框架吧~ 服务器无非主要提供接口和静态文件读取,直接上代码: const express = require('express'); cons ...

  4. 安装CentOS7,连接mysql提示密码错误

    1.grep 'temporary password' /var/log/mysqld.log 如果上面命令没有查看到密码 2.修改my.cnf文件.在mysqld下加入skip-grant-tabl ...

  5. 扩展Microsoft Graph数据结构 - 架构扩展

    前言 此前我有一篇 文章 讲解了Microsoft Graph的一种数据扩展技术-- 开发扩展(Open Extensions),它可以实现在支持的对象(例如用户,组等)上面附加任意的数据.但开放扩展 ...

  6. 电梯模拟C++

    1.问题描述与要求 模拟某校九层教学楼的电梯系统.该楼有一个自动电梯,能在每层停留,其中第一层是大楼的进出层,即是电梯的"本垒层",电梯"空闲"时,将来到该层候 ...

  7. gradle入门(1-8)gradle 的依赖查看、依赖排除和指定版本(需要验证!)

    一.依赖查看 gradle dependencies 在gradle dependencies输出会有如下几种标记: 1.版本 : 唯一的依赖. 2.版本():还存在该库其他版本的依赖或者间接依赖,并 ...

  8. MSSQl 事务的使用

    事务具有以下四个特性: 1.原子性 事务的原子性是指事务中包含的所有操作要么全做,要么全不做. 2.一致性 在事务开始以前,数据库处于一致性的状态,事务结束后,数据库也必须处于一致性状态. 3.隔离性 ...

  9. ssh_maven之controller层开发

    我们已经完成了前两层的开发,现在 只剩下我们的controller层了,对于这一层,我们需要创建一个动作类CustomerAction,另外就是我们的strutss.xml以及我们的applicati ...

  10. jprofiler配置

    cataline.sh JAVA_OPTS="$JAVA_OPTS -agentlib:jprofilerti=port=8849"JAVA_OPTS="$JAVA_OP ...