FFmpeg的HEVC解码器源代码简单分析:解析器(Parser)部分
=====================================================
HEVC源代码分析文章列表:
【解码 -libavcodec HEVC 解码器】
FFmpeg的HEVC解码器源代码简单分析:解析器(Parser)部分
FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-PU
FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-TU
FFmpeg的HEVC解码器源代码简单分析:环路滤波(LoopFilter)
=====================================================
上篇文章概述了FFmpeg的libavcodec中HEVC(H.265)解码器的结构;从这篇文章开始,具体研究HEVC解码器的源代码。本文分析HEVC解码器中解析器(Parser)部分的源代码。这部分的代码用于分割HEVC的NALU,并且解析SPS、PPS、SEI等信息。解析HEVC码流(对应AVCodecParser结构体中的函数)和解码HEVC码流(对应AVCodec结构体中的函数)的时候都会调用该部分的代码完成相应的功能。
函数调用关系图
FFmpeg HEVC解析器(Parser)部分在整个HEVC解码器中的位置如下图所示。
HEVC解析器(Parser)部分的源代码的调用关系如下图所示。
从图中可以看出,HEVC解析器调用了parse_nal_units(),HEVC解码器调用了decode_nal_units(),而上述两个函数都调用了下面几个解析函数:
ff_hevc_decode_nal_vps():解析VPS。
ff_hevc_decode_nal_sps():解析SPS。
ff_hevc_decode_nal_pps():解析PPS。
ff_hevc_decode_nal_sei():解析SEI。
下文将会分别这几个函数。
ff_hevc_decoder
ff_hevc_decoder是HEVC解码器对应的AVCodec结构体。该结构体的定义位于libavcodec\hevc.c,如下所示。
AVCodec ff_hevc_decoder = { .name = "hevc", .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_HEVC, .priv_data_size = sizeof(HEVCContext), .priv_class = &hevc_decoder_class, .init = hevc_decode_init, .close = hevc_decode_free, .decode = hevc_decode_frame, .flush = hevc_decode_flush, .update_thread_context = hevc_update_thread_context, .init_thread_copy = hevc_init_thread_copy, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS, .profiles = NULL_IF_CONFIG_SMALL(profiles), };
从源代码中可以看出,HEVC解码器的解码函数是hevc_decode_frame()。由于本文主要分析HEVC解析器,所以不对解码函数进行分析。在这里只需要知道hevc_decode_frame()调用了decode_nal_units(),而decode_nal_units()最终调用了ff_hevc_decode_nal_sps()等解析函数即可。
ff_hevc_parser
ff_hevc_parser是HEVC解析器对应的AVCodecParser结构体。该结构体的定义位于libavcodec\hevc_parser.c,如下所示。
AVCodecParser ff_hevc_parser = { .codec_ids = { AV_CODEC_ID_HEVC }, .priv_data_size = sizeof(HEVCParseContext), .parser_init = hevc_init, .parser_parse = hevc_parse, .parser_close = hevc_close, .split = hevc_split, };
从源代码可以看出,HEVC解析器的初始化函数是hevc_init(),解析函数是hevc_parse(),关闭函数是hevc_close()。
hevc_init()
hevc_init()是HEVC解析器的初始化函数,该函数的定义如下所示。
static int hevc_init(AVCodecParserContext *s) { HEVCContext *h = &((HEVCParseContext *)s->priv_data)->h; h->HEVClc = av_mallocz(sizeof(HEVCLocalContext)); h->skipped_bytes_pos_size = INT_MAX; return 0; }
可以看出hevc_init()简单地给内部成员变量分配了内存。
hevc_close()
hevc_close()是HEVC解析器的关闭函数,该函数的定义如下所示。
static void hevc_close(AVCodecParserContext *s) { int i; HEVCContext *h = &((HEVCParseContext *)s->priv_data)->h; ParseContext *pc = &((HEVCParseContext *)s->priv_data)->pc; av_freep(&h->skipped_bytes_pos); av_freep(&h->HEVClc); av_freep(&pc->buffer); for (i = 0; i < FF_ARRAY_ELEMS(h->vps_list); i++) av_buffer_unref(&h->vps_list[i]); for (i = 0; i < FF_ARRAY_ELEMS(h->sps_list); i++) av_buffer_unref(&h->sps_list[i]); for (i = 0; i < FF_ARRAY_ELEMS(h->pps_list); i++) av_buffer_unref(&h->pps_list[i]); av_buffer_unref(&h->current_sps); h->sps = NULL; for (i = 0; i < h->nals_allocated; i++) av_freep(&h->nals[i].rbsp_buffer); av_freep(&h->nals); h->nals_allocated = 0; }
可以看出hevc_close()释放了内部成员变量的内存。
hevc_parse()
hevc_parse()是HEVC解析器中最关键的解析函数。该函数的定义如下所示。
/* * 解析码流 * * 注释:雷霄骅 * leixiaohua1020@126.com * http://blog.csdn.net/leixiaohua1020 */ static int hevc_parse(AVCodecParserContext *s, AVCodecContext *avctx, const uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { int next; ParseContext *pc = &((HEVCParseContext *)s->priv_data)->pc; //PARSER_FLAG_COMPLETE_FRAMES为1的时候说明传入的就是完整的1帧数据 //这时候不用再分割NALU //PARSER_FLAG_COMPLETE_FRAMES为0的时候说明传入的是任意一段数据 //需要先分离出完整的NALU if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) { next = buf_size; } else { //分割NALU //通过查找起始码0x000001的方法 next = hevc_find_frame_end(s, buf, buf_size); //合并 if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) { *poutbuf = NULL; *poutbuf_size = 0; return buf_size; } } //解析NALU内容(不解码) parse_nal_units(s, avctx, buf, buf_size); *poutbuf = buf; *poutbuf_size = buf_size; return next; }
从源代码可以看出,hevc_parse()主要做了两步工作:
(1)判断传入的flags 中是否包含PARSER_FLAG_COMPLETE_FRAMES。如果包含,则说明传入的是完整的一帧数据,不作任何处理;如果不包含,则说明传入的不是完整的一帧数据而是任意一段HEVC数据,则需要调用hevc_find_frame_end()通过查找“起始码”(0x00000001或者0x000001)的方法,分离出完整的一帧数据。
(2)调用parse_nal_units()完成了NALU的解析工作。
下面分别看一下这两步中的两个函数。
hevc_find_frame_end()
hevc_find_frame_end()用于从HEVC码流中分离出完整的NALU。该函数的定义位于libavcodec\hevc_parser.c,如下所示。
/** * Find the end of the current frame in the bitstream. * @return the position of the first byte of the next frame, or END_NOT_FOUND */ //分割NALU static int hevc_find_frame_end(AVCodecParserContext *s, const uint8_t *buf, int buf_size) { int i; ParseContext *pc = &((HEVCParseContext *)s->priv_data)->pc; //一个一个字节进行处理 for (i = 0; i < buf_size; i++) { int nut; //state64可以存8个字节 //buf[i]存入state64 pc->state64 = (pc->state64 << 8) | buf[i]; //起始码定义#define START_CODE 0x000001 //state64右移24bit之后,再对比是否为起始码0x000001 if (((pc->state64 >> 3 * 8) & 0xFFFFFF) != START_CODE) continue; //找到起始码之后 /* * 此时state64内容如下: * | Start Code | NALU Header | * |------|------|------|------|------|------|------|------| * * | buf | buf | buf | buf | buf | buf | * | [t-5]| [t-4]| [t-3]| [t-2]| [t-1]| [t] | * * Start Code: * 0x000001 * * NALU Header: * forbidden_zero_bit: 1bit。取值0。 * nal_unit_type: 6 bit。NALU类型。 * nuh_layer_id: 6 bit。目前取值为0(保留以后使用). * nuh_temporal_id_plus1: 3 bit。减1后为NALU时域层标识号TemporalID。 * */ //state64右移16bit之后,state64最低字节为起始码后面的1Byte。即为NALU Header的前一个字节 //NALU Header的前一个字节中,第1bit为forbidden_zero_bit,取值为0; //2-7bit为nal_unit_type;第8bit为nuh_layer_id,取值为0。 //在这里state64右移(16+1)bit,然后相与0x3F(00111111) //即得到了nal_unit_type nut = (pc->state64 >> 2 * 8 + 1) & 0x3F; // Beginning of access unit if ((nut >= NAL_VPS && nut <= NAL_AUD) || nut == NAL_SEI_PREFIX || (nut >= 41 && nut <= 44) || (nut >= 48 && nut <= 55)) { if (pc->frame_start_found) { pc->frame_start_found = 0; //返回起始码开始位置 return i - 5; } } else if (nut <= NAL_RASL_R || (nut >= NAL_BLA_W_LP && nut <= NAL_CRA_NUT)) { int first_slice_segment_in_pic_flag = buf[i] >> 7; if (first_slice_segment_in_pic_flag) { if (!pc->frame_start_found) { pc->frame_start_found = 1; } else { // First slice of next frame found pc->frame_start_found = 0; //返回起始码开始位置 return i - 5; } } } } return END_NOT_FOUND; }
从源代码可以看出,hevc_find_frame_end()使用ParseContext中的state64临时缓存读取的字节。state64是一个uint64_t类型的变量,一共可以存储8Byte的数据。函数体的for()循环一次读取一个字节,读取完成后将该字节放入state64变量中;接着与起始码“0x000001”进行比较,如果不相等则继续读取,如果相等的话则提取NALU Header中nal_unit_type信息做相应处理后返回起始码开始的位置。
parse_nal_units()
parse_nal_units()用于解析一些NALU(VPS、SPS、PPS)的信息。该函数的定义位于libavcodec\hevc_parser.c,如下所示。
/** * Parse NAL units of found picture and decode some basic information. * * @param s parser context. * @param avctx codec context. * @param buf buffer with field/frame data. * @param buf_size size of the buffer. * * 解析NALU内容(不解码) * 注释:雷霄骅 * leixiaohua1020@126.com * http://blog.csdn.net/leixiaohua1020 * */ static inline int parse_nal_units(AVCodecParserContext *s, AVCodecContext *avctx, const uint8_t *buf, int buf_size) { HEVCContext *h = &((HEVCParseContext *)s->priv_data)->h; GetBitContext *gb = &h->HEVClc->gb; SliceHeader *sh = &h->sh; const uint8_t *buf_end = buf + buf_size; int state = -1, i; HEVCNAL *nal; /* set some sane default values */ s->pict_type = AV_PICTURE_TYPE_I; s->key_frame = 0; s->picture_structure = AV_PICTURE_STRUCTURE_UNKNOWN; h->avctx = avctx; if (!buf_size) return 0; if (h->nals_allocated < 1) { HEVCNAL *tmp = av_realloc_array(h->nals, 1, sizeof(*tmp)); if (!tmp) return AVERROR(ENOMEM); h->nals = tmp; memset(h->nals, 0, sizeof(*tmp)); h->nals_allocated = 1; } nal = &h->nals[0]; for (;;) { int src_length, consumed; buf = avpriv_find_start_code(buf, buf_end, &state); if (--buf + 2 >= buf_end) break; src_length = buf_end - buf; h->nal_unit_type = (*buf >> 1) & 0x3f; h->temporal_id = (*(buf + 1) & 0x07) - 1; if (h->nal_unit_type <= NAL_CRA_NUT) { // Do not walk the whole buffer just to decode slice segment header if (src_length > 20) src_length = 20; } //类似于H.264解析器中的ff_h264_decode_nal() consumed = ff_hevc_extract_rbsp(h, buf, src_length, nal); if (consumed < 0) return consumed; init_get_bits8(gb, nal->data + 2, nal->size); /* * 几种NALU之间的关系 * +--SS1 * | * +--PPS1<--+ * | | * +--SPS1<--+ +--SS2 * | | * VPS<--+ +--PPS2 * | * +--SPS2 * */ //解析不同种类的NALU switch (h->nal_unit_type) { case NAL_VPS: //解析VPS //VPS主要传输视频分级信息,有利于兼容可分级视频编码以及多视点视频编码 ff_hevc_decode_nal_vps(h); break; case NAL_SPS: //解析SPS ff_hevc_decode_nal_sps(h); break; case NAL_PPS: //解析PPS ff_hevc_decode_nal_pps(h); break; case NAL_SEI_PREFIX: case NAL_SEI_SUFFIX: //解析SEI ff_hevc_decode_nal_sei(h); break; case NAL_TRAIL_N: case NAL_TRAIL_R: case NAL_TSA_N: case NAL_TSA_R: case NAL_STSA_N: case NAL_STSA_R: case NAL_RADL_N: case NAL_RADL_R: case NAL_RASL_N: case NAL_RASL_R: case NAL_BLA_W_LP: case NAL_BLA_W_RADL: case NAL_BLA_N_LP: case NAL_IDR_W_RADL: case NAL_IDR_N_LP: case NAL_CRA_NUT: //解析 SS Header //按照解码顺序,当前SS是否为第1个SS(Slice Segment) sh->first_slice_in_pic_flag = get_bits1(gb); s->picture_structure = h->picture_struct; s->field_order = h->picture_struct; //IRAP, Intra Random Access Point, 随机介入点 //包括 IDR, CRA, BLA if (IS_IRAP(h)) { //设置关键帧 s->key_frame = 1; sh->no_output_of_prior_pics_flag = get_bits1(gb); } //当前Slice引用的PPS的ID号 sh->pps_id = get_ue_golomb(gb); if (sh->pps_id >= MAX_PPS_COUNT || !h->pps_list[sh->pps_id]) { av_log(h->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id); return AVERROR_INVALIDDATA; } h->pps = (HEVCPPS*)h->pps_list[sh->pps_id]->data; if (h->pps->sps_id >= MAX_SPS_COUNT || !h->sps_list[h->pps->sps_id]) { av_log(h->avctx, AV_LOG_ERROR, "SPS id out of range: %d\n", h->pps->sps_id); return AVERROR_INVALIDDATA; } if (h->sps != (HEVCSPS*)h->sps_list[h->pps->sps_id]->data) { h->sps = (HEVCSPS*)h->sps_list[h->pps->sps_id]->data; h->vps = (HEVCVPS*)h->vps_list[h->sps->vps_id]->data; } //当前Slice不是第一个SS if (!sh->first_slice_in_pic_flag) { int slice_address_length; //当前SS是否依赖SS if (h->pps->dependent_slice_segments_enabled_flag) sh->dependent_slice_segment_flag = get_bits1(gb); else sh->dependent_slice_segment_flag = 0; slice_address_length = av_ceil_log2_c(h->sps->ctb_width * h->sps->ctb_height); //当前SS中第一个CTU的地址 sh->slice_segment_addr = get_bits(gb, slice_address_length); if (sh->slice_segment_addr >= h->sps->ctb_width * h->sps->ctb_height) { av_log(h->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n", sh->slice_segment_addr); return AVERROR_INVALIDDATA; } } else sh->dependent_slice_segment_flag = 0;//独立SS if (sh->dependent_slice_segment_flag)//依赖SS break; for (i = 0; i < h->pps->num_extra_slice_header_bits; i++) skip_bits(gb, 1); // slice_reserved_undetermined_flag[] //slice type定义: // 0: B Slice // 1: P Slice // 2: I Slice sh->slice_type = get_ue_golomb(gb);// if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE || sh->slice_type == B_SLICE)) { av_log(h->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", sh->slice_type); return AVERROR_INVALIDDATA; } s->pict_type = sh->slice_type == B_SLICE ? AV_PICTURE_TYPE_B : sh->slice_type == P_SLICE ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I; if (h->pps->output_flag_present_flag) sh->pic_output_flag = get_bits1(gb); if (h->sps->separate_colour_plane_flag) sh->colour_plane_id = get_bits(gb, 2); if (!IS_IDR(h)) { //不是IDR,则计算POC sh->pic_order_cnt_lsb = get_bits(gb, h->sps->log2_max_poc_lsb); s->output_picture_number = h->poc = ff_hevc_compute_poc(h, sh->pic_order_cnt_lsb); } else s->output_picture_number = h->poc = 0; if (h->temporal_id == 0 && h->nal_unit_type != NAL_TRAIL_N && h->nal_unit_type != NAL_TSA_N && h->nal_unit_type != NAL_STSA_N && h->nal_unit_type != NAL_RADL_N && h->nal_unit_type != NAL_RASL_N && h->nal_unit_type != NAL_RADL_R && h->nal_unit_type != NAL_RASL_R) h->pocTid0 = h->poc; return 0; /* no need to evaluate the rest */ } buf += consumed; } /* didn't find a picture! */ av_log(h->avctx, AV_LOG_ERROR, "missing picture in access unit\n"); return -1; }
从源代码可以看出,parse_nal_units()根据nal_unit_type的不同,调用不同的解析函数进行处理。例如:
a)解析VPS的时候调用ff_hevc_decode_nal_vps()
b)解析SPS的时候调用ff_hevc_decode_nal_sps()
c)解析PPS的时候调用ff_hevc_decode_nal_pps()
d)解析SEI的时候调用ff_hevc_decode_nal_sei()
e)解析SS Header的一部分信息。
下文简单分析这几种NALU的解析函数。
ff_hevc_decode_nal_vps()
目前还没有研究过VPS,所以没有分析该函数。
ff_hevc_decode_nal_sps()
ff_hevc_decode_nal_sps()用于解析HEVC码流中的SPS。该函数的定义位于libavcodec\hevc_ps.c,如下所示。
//解析SPS int ff_hevc_decode_nal_sps(HEVCContext *s) { const AVPixFmtDescriptor *desc; GetBitContext *gb = &s->HEVClc->gb; int ret = 0; unsigned int sps_id = 0; int log2_diff_max_min_transform_block_size; int bit_depth_chroma, start, vui_present, sublayer_ordering_info; int i; HEVCSPS *sps; AVBufferRef *sps_buf = av_buffer_allocz(sizeof(*sps)); if (!sps_buf) return AVERROR(ENOMEM); sps = (HEVCSPS*)sps_buf->data; av_log(s->avctx, AV_LOG_DEBUG, "Decoding SPS\n"); // Coded parameters // 当前引用的VPS的ID sps->vps_id = get_bits(gb, 4); if (sps->vps_id >= MAX_VPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "VPS id out of range: %d\n", sps->vps_id); ret = AVERROR_INVALIDDATA; goto err; } if (!s->vps_list[sps->vps_id]) { av_log(s->avctx, AV_LOG_ERROR, "VPS %d does not exist\n", sps->vps_id); ret = AVERROR_INVALIDDATA; goto err; } //时域子层的最大数目 sps->max_sub_layers = get_bits(gb, 3) + 1; if (sps->max_sub_layers > MAX_SUB_LAYERS) { av_log(s->avctx, AV_LOG_ERROR, "sps_max_sub_layers out of range: %d\n", sps->max_sub_layers); ret = AVERROR_INVALIDDATA; goto err; } skip_bits1(gb); // temporal_id_nesting_flag if (parse_ptl(s, &sps->ptl, sps->max_sub_layers) < 0) goto err; //当前SPS的ID sps_id = get_ue_golomb_long(gb); if (sps_id >= MAX_SPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "SPS id out of range: %d\n", sps_id); ret = AVERROR_INVALIDDATA; goto err; } /* * chroma_format_idc色度取样格式 * 0: Y * 1: YUV420P * 2: YUV422P * 3: YUV444P */ sps->chroma_format_idc = get_ue_golomb_long(gb); if (!(sps->chroma_format_idc == 1 || sps->chroma_format_idc == 2 || sps->chroma_format_idc == 3)) { avpriv_report_missing_feature(s->avctx, "chroma_format_idc != {1, 2, 3}\n"); ret = AVERROR_PATCHWELCOME; goto err; } //YUV444的时候,标记是否对3个分量单独编码 if (sps->chroma_format_idc == 3) sps->separate_colour_plane_flag = get_bits1(gb); if (sps->separate_colour_plane_flag) sps->chroma_format_idc = 0; //宽和高 sps->width = get_ue_golomb_long(gb); sps->height = get_ue_golomb_long(gb); if ((ret = av_image_check_size(sps->width, sps->height, 0, s->avctx)) < 0) goto err; //裁剪相关 if (get_bits1(gb)) { // pic_conformance_flag //TODO: * 2 is only valid for 420 sps->pic_conf_win.left_offset = get_ue_golomb_long(gb) * 2; sps->pic_conf_win.right_offset = get_ue_golomb_long(gb) * 2; sps->pic_conf_win.top_offset = get_ue_golomb_long(gb) * 2; sps->pic_conf_win.bottom_offset = get_ue_golomb_long(gb) * 2; if (s->avctx->flags2 & CODEC_FLAG2_IGNORE_CROP) { av_log(s->avctx, AV_LOG_DEBUG, "discarding sps conformance window, " "original values are l:%u r:%u t:%u b:%u\n", sps->pic_conf_win.left_offset, sps->pic_conf_win.right_offset, sps->pic_conf_win.top_offset, sps->pic_conf_win.bottom_offset); sps->pic_conf_win.left_offset = sps->pic_conf_win.right_offset = sps->pic_conf_win.top_offset = sps->pic_conf_win.bottom_offset = 0; } sps->output_window = sps->pic_conf_win; } //亮度像素的颜色位深 sps->bit_depth = get_ue_golomb_long(gb) + 8; //色度像素的颜色位深 bit_depth_chroma = get_ue_golomb_long(gb) + 8; if (bit_depth_chroma != sps->bit_depth) { av_log(s->avctx, AV_LOG_ERROR, "Luma bit depth (%d) is different from chroma bit depth (%d), " "this is unsupported.\n", sps->bit_depth, bit_depth_chroma); ret = AVERROR_INVALIDDATA; goto err; } //根据颜色位深和色度采样格式设定pix_fmt switch (sps->bit_depth) { case 8: if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P; break; case 9: if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P9; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P9; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P9; break; case 10: if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P10; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P10; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P10; break; case 12: if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P12; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P12; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P12; break; default: av_log(s->avctx, AV_LOG_ERROR, "4:2:0, 4:2:2, 4:4:4 supports are currently specified for 8, 10 and 12 bits.\n"); ret = AVERROR_PATCHWELCOME; goto err; } desc = av_pix_fmt_desc_get(sps->pix_fmt); if (!desc) { ret = AVERROR(EINVAL); goto err; } sps->hshift[0] = sps->vshift[0] = 0; sps->hshift[2] = sps->hshift[1] = desc->log2_chroma_w; sps->vshift[2] = sps->vshift[1] = desc->log2_chroma_h; sps->pixel_shift = sps->bit_depth > 8; //用于计算POC sps->log2_max_poc_lsb = get_ue_golomb_long(gb) + 4; if (sps->log2_max_poc_lsb > 16) { av_log(s->avctx, AV_LOG_ERROR, "log2_max_pic_order_cnt_lsb_minus4 out range: %d\n", sps->log2_max_poc_lsb - 4); ret = AVERROR_INVALIDDATA; goto err; } sublayer_ordering_info = get_bits1(gb); start = sublayer_ordering_info ? 0 : sps->max_sub_layers - 1; for (i = start; i < sps->max_sub_layers; i++) { sps->temporal_layer[i].max_dec_pic_buffering = get_ue_golomb_long(gb) + 1; sps->temporal_layer[i].num_reorder_pics = get_ue_golomb_long(gb); sps->temporal_layer[i].max_latency_increase = get_ue_golomb_long(gb) - 1; if (sps->temporal_layer[i].max_dec_pic_buffering > MAX_DPB_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "sps_max_dec_pic_buffering_minus1 out of range: %d\n", sps->temporal_layer[i].max_dec_pic_buffering - 1); ret = AVERROR_INVALIDDATA; goto err; } if (sps->temporal_layer[i].num_reorder_pics > sps->temporal_layer[i].max_dec_pic_buffering - 1) { av_log(s->avctx, AV_LOG_WARNING, "sps_max_num_reorder_pics out of range: %d\n", sps->temporal_layer[i].num_reorder_pics); if (s->avctx->err_recognition & AV_EF_EXPLODE || sps->temporal_layer[i].num_reorder_pics > MAX_DPB_SIZE - 1) { ret = AVERROR_INVALIDDATA; goto err; } sps->temporal_layer[i].max_dec_pic_buffering = sps->temporal_layer[i].num_reorder_pics + 1; } } if (!sublayer_ordering_info) { for (i = 0; i < start; i++) { sps->temporal_layer[i].max_dec_pic_buffering = sps->temporal_layer[start].max_dec_pic_buffering; sps->temporal_layer[i].num_reorder_pics = sps->temporal_layer[start].num_reorder_pics; sps->temporal_layer[i].max_latency_increase = sps->temporal_layer[start].max_latency_increase; } } //亮度编码块-最小尺寸 sps->log2_min_cb_size = get_ue_golomb_long(gb) + 3; //亮度编码块-最大尺寸和最小尺寸插值 sps->log2_diff_max_min_coding_block_size = get_ue_golomb_long(gb); //亮度变换块-最小尺寸 sps->log2_min_tb_size = get_ue_golomb_long(gb) + 2; //亮度变换块-最大尺寸和最小尺寸插值 log2_diff_max_min_transform_block_size = get_ue_golomb_long(gb); sps->log2_max_trafo_size = log2_diff_max_min_transform_block_size + sps->log2_min_tb_size; if (sps->log2_min_tb_size >= sps->log2_min_cb_size) { av_log(s->avctx, AV_LOG_ERROR, "Invalid value for log2_min_tb_size"); ret = AVERROR_INVALIDDATA; goto err; } //帧间预测变换块-最大划分深度 sps->max_transform_hierarchy_depth_inter = get_ue_golomb_long(gb); //帧内预测变换块-最大划分深度 sps->max_transform_hierarchy_depth_intra = get_ue_golomb_long(gb); //是否使用量化矩阵 sps->scaling_list_enable_flag = get_bits1(gb); if (sps->scaling_list_enable_flag) { set_default_scaling_list_data(&sps->scaling_list); if (get_bits1(gb)) { ret = scaling_list_data(s, &sps->scaling_list, sps); if (ret < 0) goto err; } } //是否使用非对称划分模式 sps->amp_enabled_flag = get_bits1(gb); //是否在去块效应滤波过程中使用样点自适应补偿SAO sps->sao_enabled = get_bits1(gb); //允许PCM编码 sps->pcm_enabled_flag = get_bits1(gb); //有关PCM编码的参数 if (sps->pcm_enabled_flag) { sps->pcm.bit_depth = get_bits(gb, 4) + 1; sps->pcm.bit_depth_chroma = get_bits(gb, 4) + 1; sps->pcm.log2_min_pcm_cb_size = get_ue_golomb_long(gb) + 3; sps->pcm.log2_max_pcm_cb_size = sps->pcm.log2_min_pcm_cb_size + get_ue_golomb_long(gb); if (sps->pcm.bit_depth > sps->bit_depth) { av_log(s->avctx, AV_LOG_ERROR, "PCM bit depth (%d) is greater than normal bit depth (%d)\n", sps->pcm.bit_depth, sps->bit_depth); ret = AVERROR_INVALIDDATA; goto err; } sps->pcm.loop_filter_disable_flag = get_bits1(gb); } //短期参考num_short_term_ref_pic_set sps->nb_st_rps = get_ue_golomb_long(gb); if (sps->nb_st_rps > MAX_SHORT_TERM_RPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "Too many short term RPS: %d.\n", sps->nb_st_rps); ret = AVERROR_INVALIDDATA; goto err; } for (i = 0; i < sps->nb_st_rps; i++) { if ((ret = ff_hevc_decode_short_term_rps(s, &sps->st_rps[i], sps, 0)) < 0) goto err; } //长期参考num_long_term_ref_pic_set sps->long_term_ref_pics_present_flag = get_bits1(gb); if (sps->long_term_ref_pics_present_flag) { sps->num_long_term_ref_pics_sps = get_ue_golomb_long(gb); if (sps->num_long_term_ref_pics_sps > 31U) { av_log(0, AV_LOG_ERROR, "num_long_term_ref_pics_sps %d is out of range.\n", sps->num_long_term_ref_pics_sps); goto err; } for (i = 0; i < sps->num_long_term_ref_pics_sps; i++) { sps->lt_ref_pic_poc_lsb_sps[i] = get_bits(gb, sps->log2_max_poc_lsb); sps->used_by_curr_pic_lt_sps_flag[i] = get_bits1(gb); } } //是否使用时域MV预测 sps->sps_temporal_mvp_enabled_flag = get_bits1(gb); //滤波过程是否使用双线性插值 sps->sps_strong_intra_smoothing_enable_flag = get_bits1(gb); sps->vui.sar = (AVRational){0, 1}; vui_present = get_bits1(gb); if (vui_present) decode_vui(s, sps); if (get_bits1(gb)) { // sps_extension_flag int sps_extension_flag[1]; for (i = 0; i < 1; i++) sps_extension_flag[i] = get_bits1(gb); skip_bits(gb, 7); //sps_extension_7bits = get_bits(gb, 7); if (sps_extension_flag[0]) { int extended_precision_processing_flag; int high_precision_offsets_enabled_flag; int cabac_bypass_alignment_enabled_flag; sps->transform_skip_rotation_enabled_flag = get_bits1(gb); sps->transform_skip_context_enabled_flag = get_bits1(gb); sps->implicit_rdpcm_enabled_flag = get_bits1(gb); sps->explicit_rdpcm_enabled_flag = get_bits1(gb); extended_precision_processing_flag = get_bits1(gb); if (extended_precision_processing_flag) av_log(s->avctx, AV_LOG_WARNING, "extended_precision_processing_flag not yet implemented\n"); sps->intra_smoothing_disabled_flag = get_bits1(gb); high_precision_offsets_enabled_flag = get_bits1(gb); if (high_precision_offsets_enabled_flag) av_log(s->avctx, AV_LOG_WARNING, "high_precision_offsets_enabled_flag not yet implemented\n"); sps->persistent_rice_adaptation_enabled_flag = get_bits1(gb); cabac_bypass_alignment_enabled_flag = get_bits1(gb); if (cabac_bypass_alignment_enabled_flag) av_log(s->avctx, AV_LOG_WARNING, "cabac_bypass_alignment_enabled_flag not yet implemented\n"); } } if (s->apply_defdispwin) { sps->output_window.left_offset += sps->vui.def_disp_win.left_offset; sps->output_window.right_offset += sps->vui.def_disp_win.right_offset; sps->output_window.top_offset += sps->vui.def_disp_win.top_offset; sps->output_window.bottom_offset += sps->vui.def_disp_win.bottom_offset; } if (sps->output_window.left_offset & (0x1F >> (sps->pixel_shift)) && !(s->avctx->flags & CODEC_FLAG_UNALIGNED)) { sps->output_window.left_offset &= ~(0x1F >> (sps->pixel_shift)); av_log(s->avctx, AV_LOG_WARNING, "Reducing left output window to %d " "chroma samples to preserve alignment.\n", sps->output_window.left_offset); } sps->output_width = sps->width - (sps->output_window.left_offset + sps->output_window.right_offset); sps->output_height = sps->height - (sps->output_window.top_offset + sps->output_window.bottom_offset); if (sps->output_width <= 0 || sps->output_height <= 0) { av_log(s->avctx, AV_LOG_WARNING, "Invalid visible frame dimensions: %dx%d.\n", sps->output_width, sps->output_height); if (s->avctx->err_recognition & AV_EF_EXPLODE) { ret = AVERROR_INVALIDDATA; goto err; } av_log(s->avctx, AV_LOG_WARNING, "Displaying the whole video surface.\n"); memset(&sps->pic_conf_win, 0, sizeof(sps->pic_conf_win)); memset(&sps->output_window, 0, sizeof(sps->output_window)); sps->output_width = sps->width; sps->output_height = sps->height; } // Inferred parameters // 推算出来的参数 sps->log2_ctb_size = sps->log2_min_cb_size + sps->log2_diff_max_min_coding_block_size; sps->log2_min_pu_size = sps->log2_min_cb_size - 1; sps->ctb_width = (sps->width + (1 << sps->log2_ctb_size) - 1) >> sps->log2_ctb_size; sps->ctb_height = (sps->height + (1 << sps->log2_ctb_size) - 1) >> sps->log2_ctb_size; sps->ctb_size = sps->ctb_width * sps->ctb_height; sps->min_cb_width = sps->width >> sps->log2_min_cb_size; sps->min_cb_height = sps->height >> sps->log2_min_cb_size; sps->min_tb_width = sps->width >> sps->log2_min_tb_size; sps->min_tb_height = sps->height >> sps->log2_min_tb_size; sps->min_pu_width = sps->width >> sps->log2_min_pu_size; sps->min_pu_height = sps->height >> sps->log2_min_pu_size; sps->tb_mask = (1 << (sps->log2_ctb_size - sps->log2_min_tb_size)) - 1; sps->qp_bd_offset = 6 * (sps->bit_depth - 8); if (sps->width & ((1 << sps->log2_min_cb_size) - 1) || sps->height & ((1 << sps->log2_min_cb_size) - 1)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid coded frame dimensions.\n"); goto err; } if (sps->log2_ctb_size > MAX_LOG2_CTB_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "CTB size out of range: 2^%d\n", sps->log2_ctb_size); goto err; } if (sps->max_transform_hierarchy_depth_inter > sps->log2_ctb_size - sps->log2_min_tb_size) { av_log(s->avctx, AV_LOG_ERROR, "max_transform_hierarchy_depth_inter out of range: %d\n", sps->max_transform_hierarchy_depth_inter); goto err; } if (sps->max_transform_hierarchy_depth_intra > sps->log2_ctb_size - sps->log2_min_tb_size) { av_log(s->avctx, AV_LOG_ERROR, "max_transform_hierarchy_depth_intra out of range: %d\n", sps->max_transform_hierarchy_depth_intra); goto err; } if (sps->log2_max_trafo_size > FFMIN(sps->log2_ctb_size, 5)) { av_log(s->avctx, AV_LOG_ERROR, "max transform block size out of range: %d\n", sps->log2_max_trafo_size); goto err; } if (get_bits_left(gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Overread SPS by %d bits\n", -get_bits_left(gb)); goto err; } if (s->avctx->debug & FF_DEBUG_BITSTREAM) { av_log(s->avctx, AV_LOG_DEBUG, "Parsed SPS: id %d; coded wxh: %dx%d; " "cropped wxh: %dx%d; pix_fmt: %s.\n", sps_id, sps->width, sps->height, sps->output_width, sps->output_height, av_get_pix_fmt_name(sps->pix_fmt)); } /* check if this is a repeat of an already parsed SPS, then keep the * original one. * otherwise drop all PPSes that depend on it */ if (s->sps_list[sps_id] && !memcmp(s->sps_list[sps_id]->data, sps_buf->data, sps_buf->size)) { av_buffer_unref(&sps_buf); } else { for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) { if (s->pps_list[i] && ((HEVCPPS*)s->pps_list[i]->data)->sps_id == sps_id) av_buffer_unref(&s->pps_list[i]); } if (s->sps_list[sps_id] && s->sps == (HEVCSPS*)s->sps_list[sps_id]->data) { av_buffer_unref(&s->current_sps); s->current_sps = av_buffer_ref(s->sps_list[sps_id]); if (!s->current_sps) s->sps = NULL; } av_buffer_unref(&s->sps_list[sps_id]); s->sps_list[sps_id] = sps_buf; } return 0; err: av_buffer_unref(&sps_buf); return ret; }
解析SPS源代码并不是很有“技术含量”。只要参考ITU-T的《HEVC标准》就可以理解了,不再做过多详细的分析。
ff_hevc_decode_nal_pps()
ff_hevc_decode_nal_pps()用于解析HEVC码流中的PPS。该函数的定义位于libavcodec\hevc_ps.c,如下所示。
//解析PPS int ff_hevc_decode_nal_pps(HEVCContext *s) { GetBitContext *gb = &s->HEVClc->gb; HEVCSPS *sps = NULL; int pic_area_in_ctbs; int log2_diff_ctb_min_tb_size; int i, j, x, y, ctb_addr_rs, tile_id; int ret = 0; unsigned int pps_id = 0; AVBufferRef *pps_buf; HEVCPPS *pps = av_mallocz(sizeof(*pps)); if (!pps) return AVERROR(ENOMEM); pps_buf = av_buffer_create((uint8_t *)pps, sizeof(*pps), hevc_pps_free, NULL, 0); if (!pps_buf) { av_freep(&pps); return AVERROR(ENOMEM); } av_log(s->avctx, AV_LOG_DEBUG, "Decoding PPS\n"); // Default values // 默认值 pps->loop_filter_across_tiles_enabled_flag = 1; pps->num_tile_columns = 1; pps->num_tile_rows = 1; pps->uniform_spacing_flag = 1; pps->disable_dbf = 0; pps->beta_offset = 0; pps->tc_offset = 0; pps->log2_max_transform_skip_block_size = 2; // Coded parameters //当前PPS的ID pps_id = get_ue_golomb_long(gb); if (pps_id >= MAX_PPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", pps_id); ret = AVERROR_INVALIDDATA; goto err; } //引用的SPS的ID pps->sps_id = get_ue_golomb_long(gb); if (pps->sps_id >= MAX_SPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "SPS id out of range: %d\n", pps->sps_id); ret = AVERROR_INVALIDDATA; goto err; } if (!s->sps_list[pps->sps_id]) { av_log(s->avctx, AV_LOG_ERROR, "SPS %u does not exist.\n", pps->sps_id); ret = AVERROR_INVALIDDATA; goto err; } sps = (HEVCSPS *)s->sps_list[pps->sps_id]->data; //判断当前Slice是否包含依赖片 pps->dependent_slice_segments_enabled_flag = get_bits1(gb); pps->output_flag_present_flag = get_bits1(gb); pps->num_extra_slice_header_bits = get_bits(gb, 3); pps->sign_data_hiding_flag = get_bits1(gb); //在CABAC中用何种方式确定上下文变量的初始值 pps->cabac_init_present_flag = get_bits1(gb); //list0中参考图像数目的默认最大值 pps->num_ref_idx_l0_default_active = get_ue_golomb_long(gb) + 1; //list1中参考图像数目的默认最大值 pps->num_ref_idx_l1_default_active = get_ue_golomb_long(gb) + 1; //亮度分量QP的初始值 pps->pic_init_qp_minus26 = get_se_golomb(gb); pps->constrained_intra_pred_flag = get_bits1(gb); pps->transform_skip_enabled_flag = get_bits1(gb); pps->cu_qp_delta_enabled_flag = get_bits1(gb); pps->diff_cu_qp_delta_depth = 0; if (pps->cu_qp_delta_enabled_flag) pps->diff_cu_qp_delta_depth = get_ue_golomb_long(gb); if (pps->diff_cu_qp_delta_depth < 0 || pps->diff_cu_qp_delta_depth > sps->log2_diff_max_min_coding_block_size) { av_log(s->avctx, AV_LOG_ERROR, "diff_cu_qp_delta_depth %d is invalid\n", pps->diff_cu_qp_delta_depth); ret = AVERROR_INVALIDDATA; goto err; } pps->cb_qp_offset = get_se_golomb(gb); if (pps->cb_qp_offset < -12 || pps->cb_qp_offset > 12) { av_log(s->avctx, AV_LOG_ERROR, "pps_cb_qp_offset out of range: %d\n", pps->cb_qp_offset); ret = AVERROR_INVALIDDATA; goto err; } pps->cr_qp_offset = get_se_golomb(gb); if (pps->cr_qp_offset < -12 || pps->cr_qp_offset > 12) { av_log(s->avctx, AV_LOG_ERROR, "pps_cr_qp_offset out of range: %d\n", pps->cr_qp_offset); ret = AVERROR_INVALIDDATA; goto err; } pps->pic_slice_level_chroma_qp_offsets_present_flag = get_bits1(gb); //P Slice是否使用加权预测 pps->weighted_pred_flag = get_bits1(gb); //B Slice是否使用加权预测 pps->weighted_bipred_flag = get_bits1(gb); pps->transquant_bypass_enable_flag = get_bits1(gb); //是否使用tile pps->tiles_enabled_flag = get_bits1(gb); pps->entropy_coding_sync_enabled_flag = get_bits1(gb); if (pps->tiles_enabled_flag) { //Tile的列数 pps->num_tile_columns = get_ue_golomb_long(gb) + 1; //Tile的行数 pps->num_tile_rows = get_ue_golomb_long(gb) + 1; if (pps->num_tile_columns == 0 || pps->num_tile_columns >= sps->width) { av_log(s->avctx, AV_LOG_ERROR, "num_tile_columns_minus1 out of range: %d\n", pps->num_tile_columns - 1); ret = AVERROR_INVALIDDATA; goto err; } if (pps->num_tile_rows == 0 || pps->num_tile_rows >= sps->height) { av_log(s->avctx, AV_LOG_ERROR, "num_tile_rows_minus1 out of range: %d\n", pps->num_tile_rows - 1); ret = AVERROR_INVALIDDATA; goto err; } pps->column_width = av_malloc_array(pps->num_tile_columns, sizeof(*pps->column_width)); pps->row_height = av_malloc_array(pps->num_tile_rows, sizeof(*pps->row_height)); if (!pps->column_width || !pps->row_height) { ret = AVERROR(ENOMEM); goto err; } pps->uniform_spacing_flag = get_bits1(gb); if (!pps->uniform_spacing_flag) { uint64_t sum = 0; //每个Tile的宽度和高度 for (i = 0; i < pps->num_tile_columns - 1; i++) { pps->column_width[i] = get_ue_golomb_long(gb) + 1; sum += pps->column_width[i]; } if (sum >= sps->ctb_width) { av_log(s->avctx, AV_LOG_ERROR, "Invalid tile widths.\n"); ret = AVERROR_INVALIDDATA; goto err; } pps->column_width[pps->num_tile_columns - 1] = sps->ctb_width - sum; sum = 0; for (i = 0; i < pps->num_tile_rows - 1; i++) { pps->row_height[i] = get_ue_golomb_long(gb) + 1; sum += pps->row_height[i]; } if (sum >= sps->ctb_height) { av_log(s->avctx, AV_LOG_ERROR, "Invalid tile heights.\n"); ret = AVERROR_INVALIDDATA; goto err; } pps->row_height[pps->num_tile_rows - 1] = sps->ctb_height - sum; } pps->loop_filter_across_tiles_enabled_flag = get_bits1(gb); } pps->seq_loop_filter_across_slices_enabled_flag = get_bits1(gb); //是否存在去方块滤波的控制信息 pps->deblocking_filter_control_present_flag = get_bits1(gb); if (pps->deblocking_filter_control_present_flag) { pps->deblocking_filter_override_enabled_flag = get_bits1(gb); //是否使用去方块滤波 pps->disable_dbf = get_bits1(gb); if (!pps->disable_dbf) { pps->beta_offset = get_se_golomb(gb) * 2; pps->tc_offset = get_se_golomb(gb) * 2; if (pps->beta_offset/2 < -6 || pps->beta_offset/2 > 6) { av_log(s->avctx, AV_LOG_ERROR, "pps_beta_offset_div2 out of range: %d\n", pps->beta_offset/2); ret = AVERROR_INVALIDDATA; goto err; } if (pps->tc_offset/2 < -6 || pps->tc_offset/2 > 6) { av_log(s->avctx, AV_LOG_ERROR, "pps_tc_offset_div2 out of range: %d\n", pps->tc_offset/2); ret = AVERROR_INVALIDDATA; goto err; } } } pps->scaling_list_data_present_flag = get_bits1(gb); if (pps->scaling_list_data_present_flag) { set_default_scaling_list_data(&pps->scaling_list); ret = scaling_list_data(s, &pps->scaling_list, sps); if (ret < 0) goto err; } pps->lists_modification_present_flag = get_bits1(gb); pps->log2_parallel_merge_level = get_ue_golomb_long(gb) + 2; if (pps->log2_parallel_merge_level > sps->log2_ctb_size) { av_log(s->avctx, AV_LOG_ERROR, "log2_parallel_merge_level_minus2 out of range: %d\n", pps->log2_parallel_merge_level - 2); ret = AVERROR_INVALIDDATA; goto err; } pps->slice_header_extension_present_flag = get_bits1(gb); if (get_bits1(gb)) { // pps_extension_present_flag int pps_range_extensions_flag = get_bits1(gb); /* int pps_extension_7bits = */ get_bits(gb, 7); if (sps->ptl.general_ptl.profile_idc == FF_PROFILE_HEVC_REXT && pps_range_extensions_flag) { if ((ret = pps_range_extensions(s, pps, sps)) < 0) goto err; } } // Inferred parameters pps->col_bd = av_malloc_array(pps->num_tile_columns + 1, sizeof(*pps->col_bd)); pps->row_bd = av_malloc_array(pps->num_tile_rows + 1, sizeof(*pps->row_bd)); pps->col_idxX = av_malloc_array(sps->ctb_width, sizeof(*pps->col_idxX)); if (!pps->col_bd || !pps->row_bd || !pps->col_idxX) { ret = AVERROR(ENOMEM); goto err; } if (pps->uniform_spacing_flag) { if (!pps->column_width) { pps->column_width = av_malloc_array(pps->num_tile_columns, sizeof(*pps->column_width)); pps->row_height = av_malloc_array(pps->num_tile_rows, sizeof(*pps->row_height)); } if (!pps->column_width || !pps->row_height) { ret = AVERROR(ENOMEM); goto err; } for (i = 0; i < pps->num_tile_columns; i++) { pps->column_width[i] = ((i + 1) * sps->ctb_width) / pps->num_tile_columns - (i * sps->ctb_width) / pps->num_tile_columns; } for (i = 0; i < pps->num_tile_rows; i++) { pps->row_height[i] = ((i + 1) * sps->ctb_height) / pps->num_tile_rows - (i * sps->ctb_height) / pps->num_tile_rows; } } pps->col_bd[0] = 0; for (i = 0; i < pps->num_tile_columns; i++) pps->col_bd[i + 1] = pps->col_bd[i] + pps->column_width[i]; pps->row_bd[0] = 0; for (i = 0; i < pps->num_tile_rows; i++) pps->row_bd[i + 1] = pps->row_bd[i] + pps->row_height[i]; for (i = 0, j = 0; i < sps->ctb_width; i++) { if (i > pps->col_bd[j]) j++; pps->col_idxX[i] = j; } /** * 6.5 */ pic_area_in_ctbs = sps->ctb_width * sps->ctb_height; pps->ctb_addr_rs_to_ts = av_malloc_array(pic_area_in_ctbs, sizeof(*pps->ctb_addr_rs_to_ts)); pps->ctb_addr_ts_to_rs = av_malloc_array(pic_area_in_ctbs, sizeof(*pps->ctb_addr_ts_to_rs)); pps->tile_id = av_malloc_array(pic_area_in_ctbs, sizeof(*pps->tile_id)); pps->min_tb_addr_zs_tab = av_malloc_array((sps->tb_mask+2) * (sps->tb_mask+2), sizeof(*pps->min_tb_addr_zs_tab)); if (!pps->ctb_addr_rs_to_ts || !pps->ctb_addr_ts_to_rs || !pps->tile_id || !pps->min_tb_addr_zs_tab) { ret = AVERROR(ENOMEM); goto err; } for (ctb_addr_rs = 0; ctb_addr_rs < pic_area_in_ctbs; ctb_addr_rs++) { int tb_x = ctb_addr_rs % sps->ctb_width; int tb_y = ctb_addr_rs / sps->ctb_width; int tile_x = 0; int tile_y = 0; int val = 0; for (i = 0; i < pps->num_tile_columns; i++) { if (tb_x < pps->col_bd[i + 1]) { tile_x = i; break; } } for (i = 0; i < pps->num_tile_rows; i++) { if (tb_y < pps->row_bd[i + 1]) { tile_y = i; break; } } for (i = 0; i < tile_x; i++) val += pps->row_height[tile_y] * pps->column_width[i]; for (i = 0; i < tile_y; i++) val += sps->ctb_width * pps->row_height[i]; val += (tb_y - pps->row_bd[tile_y]) * pps->column_width[tile_x] + tb_x - pps->col_bd[tile_x]; pps->ctb_addr_rs_to_ts[ctb_addr_rs] = val; pps->ctb_addr_ts_to_rs[val] = ctb_addr_rs; } for (j = 0, tile_id = 0; j < pps->num_tile_rows; j++) for (i = 0; i < pps->num_tile_columns; i++, tile_id++) for (y = pps->row_bd[j]; y < pps->row_bd[j + 1]; y++) for (x = pps->col_bd[i]; x < pps->col_bd[i + 1]; x++) pps->tile_id[pps->ctb_addr_rs_to_ts[y * sps->ctb_width + x]] = tile_id; pps->tile_pos_rs = av_malloc_array(tile_id, sizeof(*pps->tile_pos_rs)); if (!pps->tile_pos_rs) { ret = AVERROR(ENOMEM); goto err; } for (j = 0; j < pps->num_tile_rows; j++) for (i = 0; i < pps->num_tile_columns; i++) pps->tile_pos_rs[j * pps->num_tile_columns + i] = pps->row_bd[j] * sps->ctb_width + pps->col_bd[i]; log2_diff_ctb_min_tb_size = sps->log2_ctb_size - sps->log2_min_tb_size; pps->min_tb_addr_zs = &pps->min_tb_addr_zs_tab[1*(sps->tb_mask+2)+1]; for (y = 0; y < sps->tb_mask+2; y++) { pps->min_tb_addr_zs_tab[y*(sps->tb_mask+2)] = -1; pps->min_tb_addr_zs_tab[y] = -1; } for (y = 0; y < sps->tb_mask+1; y++) { for (x = 0; x < sps->tb_mask+1; x++) { int tb_x = x >> log2_diff_ctb_min_tb_size; int tb_y = y >> log2_diff_ctb_min_tb_size; int ctb_addr_rs = sps->ctb_width * tb_y + tb_x; int val = pps->ctb_addr_rs_to_ts[ctb_addr_rs] << (log2_diff_ctb_min_tb_size * 2); for (i = 0; i < log2_diff_ctb_min_tb_size; i++) { int m = 1 << i; val += (m & x ? m * m : 0) + (m & y ? 2 * m * m : 0); } pps->min_tb_addr_zs[y * (sps->tb_mask+2) + x] = val; } } if (get_bits_left(gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Overread PPS by %d bits\n", -get_bits_left(gb)); goto err; } av_buffer_unref(&s->pps_list[pps_id]); s->pps_list[pps_id] = pps_buf; return 0; err: av_buffer_unref(&pps_buf); return ret; }
与解析SPS类似,解析PPS源代码并不是很有“技术含量”。只要参考ITU-T的《H.264标准》就可以理解了,不再做过多详细的分析。
ff_hevc_decode_nal_sei()
ff_hevc_decode_nal_sei()用于解析HEVC码流中的SEI。该函数的定义位于libavcodec\hevc_sei.c,如下所示。
//解析SEI int ff_hevc_decode_nal_sei(HEVCContext *s) { int ret; do { //解析SEI信息 ret = decode_nal_sei_message(s); if (ret < 0) return(AVERROR(ENOMEM)); } while (more_rbsp_data(&s->HEVClc->gb)); return 1; }
从源代码可以看出,ff_hevc_decode_nal_sei()在一个do while循环中调用了另外一个函数decode_nal_sei_message()解析SEI信息。
decode_nal_sei_message()
decode_nal_sei_message()用于解析SEI信息,它的定义如下。
//解析SEI信息 static int decode_nal_sei_message(HEVCContext *s) { GetBitContext *gb = &s->HEVClc->gb; int payload_type = 0; int payload_size = 0; int byte = 0xFF; av_log(s->avctx, AV_LOG_DEBUG, "Decoding SEI\n"); while (byte == 0xFF) { byte = get_bits(gb, 8); payload_type += byte; } byte = 0xFF; while (byte == 0xFF) { byte = get_bits(gb, 8); payload_size += byte; } if (s->nal_unit_type == NAL_SEI_PREFIX) { if (payload_type == 256 /*&& s->decode_checksum_sei*/) { decode_nal_sei_decoded_picture_hash(s); } else if (payload_type == 45) { decode_nal_sei_frame_packing_arrangement(s); } else if (payload_type == 47) { decode_nal_sei_display_orientation(s); } else if (payload_type == 1){ int ret = decode_pic_timing(s); av_log(s->avctx, AV_LOG_DEBUG, "Skipped PREFIX SEI %d\n", payload_type); skip_bits(gb, 8 * payload_size); return ret; } else if (payload_type == 129){ active_parameter_sets(s); av_log(s->avctx, AV_LOG_DEBUG, "Skipped PREFIX SEI %d\n", payload_type); } else { av_log(s->avctx, AV_LOG_DEBUG, "Skipped PREFIX SEI %d\n", payload_type); skip_bits(gb, 8*payload_size); } } else { /* nal_unit_type == NAL_SEI_SUFFIX */ if (payload_type == 132 /* && s->decode_checksum_sei */) decode_nal_sei_decoded_picture_hash(s); else { av_log(s->avctx, AV_LOG_DEBUG, "Skipped SUFFIX SEI %d\n", payload_type); skip_bits(gb, 8 * payload_size); } } return 1; }
从源代码可以看出,decode_nal_sei_message()根据不同的payload_type调用不同的函数进行处理,例如调用decode_nal_sei_decoded_picture_hash(),decode_nal_sei_frame_packing_arrangement(),decode_nal_sei_display_orientation()等等。
雷霄骅
leixiaohua1020@126.com
http://blog.csdn.net/leixiaohua1020
FFmpeg的HEVC解码器源代码简单分析:解析器(Parser)部分的更多相关文章
- FFmpeg的HEVC解码器源代码简单分析:环路滤波(Loop Filter)
===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...
- FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-TU
===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...
- FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-PU
===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...
- FFmpeg的HEVC解码器源代码简单分析:解码器主干部分
===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...
- FFmpeg的HEVC解码器源代码简单分析:概述
===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...
- FFmpeg的H.264解码器源代码简单分析:解析器(Parser)部分
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- FFmpeg的H.264解码器源代码简单分析:环路滤波(Loop Filter)部分
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- FFmpeg的H.264解码器源代码简单分析:宏块解码(Decode)部分-帧间宏块(Inter)
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- FFmpeg的H.264解码器源代码简单分析:熵解码(Entropy Decoding)部分
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
随机推荐
- Ubantu16.04系统优化
系统清理篇 系统更新 安装完系统之后,需要更新一些补丁.Ctrl+Alt+T调出终端,执行一下代码: sudo apt-get update sudo apt-get upgrade 卸载libreO ...
- 【USACO17JAN】Promotion Counting晋升者计数 线段树+离散化
题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...
- hdu 5130(2014广州 圆与多边形相交模板)
题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y), (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...
- Spring 自带的定时任务Scheduled
1.注解@Scheduled 可以作为一个触发源添加到一个方法中,例如,以下的方法将以一个固定延迟时间5秒钟调用一次执行,这个周期是以上一个调用任务的完成时间为基准,在上一个任务完成之后,5s后再次执 ...
- tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...
- SVN与Git
一:SVN是什么?SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS.互联网上很多版本控制服务已从CVS迁移到S ...
- Cisco 交换机配置的基本命令
1.不同的vlan 不同vlan需要路由 在路由的端口设置多个IP段 交换机模拟器实验六 2.查看端口名字 SWA#sh vlan default Active F0/1, F0/2, F0 ...
- React .js框架的环境搭建
React学习笔记(一)- 环境搭建 最近在学习react相关的知识,刚刚起步,一路遇坑不断.自己做个笔记,方便日后总结,也供相同趣味的小伙伴一起交流探讨. 学习时主要参考官网的教程:https: ...
- Mysql--七种 Join 查询
Mysql 系列文章主页 =============== 1 准备数据 1.1 建立 Employee 表 DROP TABLE IF EXISTS employee; CREATE TABLE IF ...
- Linux用户管理命令大全
1.添加用户,首先用adduser命令添加一个普通用户,命令如下: $ adduser tommy //添加一个名为tommy的用户 $ passwd tommy //修改密码 Changing pa ...