Linux 高性能服务器编程——socket选项
#include <sys/scoket.h>
int getsockopt ( int sockfd, int level, int option_name, void* option_value, socklen_t* restrict option_len );
int setsockopt ( int sockfd, int level, int option_name, const void* option_value, socklen_t option_len);
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h> int main( int argc, char* argv[] )
{
if( argc <= 2 )
{
printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] ); int sock = socket( PF_INET, SOCK_STREAM, 0 );
assert( sock >= 0 );
int reuse = 1;
setsockopt( sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof( reuse ) ); struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port );
int ret = bind( sock, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 ); ret = listen( sock, 5 );
assert( ret != -1 ); struct sockaddr_in client;
socklen_t client_addrlength = sizeof( client );
int connfd = accept( sock, ( struct sockaddr* )&client, &client_addrlength );
if ( connfd < 0 )
{
printf( "errno is: %d\n", errno );
}
else
{
char remote[INET_ADDRSTRLEN ];
printf( "connected with ip: %s and port: %d\n",
inet_ntop( AF_INET, &client.sin_addr, remote, INET_ADDRSTRLEN ), ntohs( client.sin_port ) );
close( connfd );
} close( sock );
return 0;
}
经过setsocketopt的设置之后,即使sock处于TIME_WAIT状态,与之绑定的socket地址也可以立即被重用。此外,我们也可以通过修改内核参数/proc/sys/net/ipv4/tcp_tw_recycle 来快速回收被关闭的socket,从而使得TCP连接根本就不进入TIME_WAIT状态,进而允许应用程序立即重用本地的socket地址。
SO_RCVBUF和SO_SNDBUF选项分别表示TCP接收缓冲区和发送缓冲区的大小。不过,当我们用setsockopt来设置TCP的接收缓冲区和发送缓冲区的大小时,系统都会将其值加倍,并且不得小于其个最小值。TCP接收缓冲区的最小值是256字节,而发送缓冲区的最小值是2048字节(不过,不同的系统可能有不同的默认最小值)。此外,我们可以直接修改内核参数/proc/sys/net/ipv4/tcp_rmem和/proc/sys/net/ipv4/tcp_wmem来强制TCP接收缓冲区和发送缓冲区的大小没有最小值限制。
#include <sys/socket.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h> #define BUFFER_SIZE 512 int main( int argc, char* argv[] )
{
if( argc <= 3 )
{
printf( "usage: %s ip_address port_number send_bufer_size\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] ); struct sockaddr_in server_address;
bzero( &server_address, sizeof( server_address ) );
server_address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &server_address.sin_addr );
server_address.sin_port = htons( port ); int sock = socket( PF_INET, SOCK_STREAM, 0 );
assert( sock >= 0 ); int sendbuf = atoi( argv[3] );
int len = sizeof( sendbuf );
setsockopt( sock, SOL_SOCKET, SO_SNDBUF, &sendbuf, sizeof( sendbuf ) );
getsockopt( sock, SOL_SOCKET, SO_SNDBUF, &sendbuf, ( socklen_t* )&len );
printf( "the tcp send buffer size after setting is %d\n", sendbuf ); if ( connect( sock, ( struct sockaddr* )&server_address, sizeof( server_address ) ) != -1 )
{
char buffer[ BUFFER_SIZE ];
memset( buffer, 'a', BUFFER_SIZE );
send( sock, buffer, BUFFER_SIZE, 0 );
} close( sock );
return 0;
}
修改TCP接收缓冲区的服务器程序:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h> #define BUFFER_SIZE 1024 int main( int argc, char* argv[] )
{
if( argc <= 3 )
{
printf( "usage: %s ip_address port_number receive_buffer_size\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] ); struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port ); int sock = socket( PF_INET, SOCK_STREAM, 0 );
assert( sock >= 0 );
int recvbuf = atoi( argv[3] );
int len = sizeof( recvbuf );
setsockopt( sock, SOL_SOCKET, SO_RCVBUF, &recvbuf, sizeof( recvbuf ) );
getsockopt( sock, SOL_SOCKET, SO_RCVBUF, &recvbuf, ( socklen_t* )&len );
printf( "the receive buffer size after settting is %d\n", recvbuf ); int ret = bind( sock, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 ); ret = listen( sock, 5 );
assert( ret != -1 ); struct sockaddr_in client;
socklen_t client_addrlength = sizeof( client );
int connfd = accept( sock, ( struct sockaddr* )&client, &client_addrlength );
if ( connfd < 0 )
{
printf( "errno is: %d\n", errno );
}
else
{
char buffer[ BUFFER_SIZE ];
memset( buffer, '\0', BUFFER_SIZE );
while( recv( connfd, buffer, BUFFER_SIZE-1, 0 ) > 0 ){}
close( connfd );
} close( sock );
return 0;
}
运行结果:
[root@vm MOTO]# ./set_recv_buffer 10.8.56.201 12345 50
the tcp send buffer size after setting is 256 [root@vm MOTO]# ./set_send_buffer 10.8.56.201 12345 2000
the receive buffer size after settting is 4000
验证结果:
接收缓冲区set | 发送缓冲区set | 接收缓冲区(实际) | 发送缓冲区(实际) |
50 | 100 | 256 | 2048 |
129 | 1025 | 258 | 2050 |
200 | 2000 | 400 | 4000 |
SO_RCVLOWAT和SO_SNDLOWAT选项分别表示TCP接收缓冲区和发送缓冲区的低水位标记。它们一般被I/O复用系统调用,用来判断socket是否可读或可写。当TCP接收缓冲区中可读数据的总数大于其低水位标记时,I/O复用系统调用将通知应用程序可以从对应的socket上读取数据;当TCP发送缓冲区中的空闲空间(可以写入数据的空间)大于其低水位标记时,I/O复用系统调用将通知应用程序可以往对应的socket上写入数据。
SO_LINGER选项用于控制close系统调用在关闭TCP连接时的行为。默认情况下,当我们使用close系统调用来关闭一个socket时,close将立即返回,TCP模块负责把该socket对应的TCP发送缓冲区中残留的数据发送给对方。
#include <sys/socket.h>
struct linger
{
int l_onoff; //开启(非0)还是关闭(0)该选项
int l_linger; // 滞留时间
};
根据linger结构体中两个成员变量的不同值,close 系统调用可能产生如下3种行为之一:
- l_onoff 等于0。此时SO_LINGER选项不起作用,close用默认行为关闭socket。
- l_onoff 不为0,l_linger等于0. 此时close 系统调用立即返回,TCP模块将丢弃被关闭的socket对应的TCP发送缓冲区中残留的数据,同时给对方一个复位报文段。因此,这种情况给服务器提供了异常终止一个连接的方法。
- l_onoff不为0,l_linger大于0 。此时close的行为取决于两个条件:(1)被关闭的socket对应的TCP发送缓冲区中是否还有残留的数据;(2)该socket是阻塞的还是非阻塞的。 对于阻塞的socket,close将等待一段长为l_linger的时间,直到TCP模块发送完所有残留数据并得到对方的确认。如果这段之间内TCP模块没有发送完残留数据并得到对方的确认,那么close系统调用将返回-1并设置errno为EWOULDBLOCK。 如果socket是非阻塞的,close将立即返回,此时我们需要根据其返回值和errno来判断残留数据是否已经发送完毕。
Linux 高性能服务器编程——socket选项的更多相关文章
- Linux 高性能服务器编程——多进程编程
问题聚焦: 进程是Linux操作系统环境的基础. 本篇讨论以下几个内容,同时也是面试经常被问到的一些问题: 1 复制进程映像的fork系统调用和替换进程映像的exec系列系统调 ...
- Linux 高性能服务器编程——Linux网络编程基础API
问题聚焦: 这节介绍的不仅是网络编程的几个API 更重要的是,探讨了Linux网络编程基础API与内核中TCP/IP协议族之间的关系. 这节主要介绍三个方面的内容:套接字(so ...
- Linux 高性能服务器编程——TCP协议详解
问题聚焦: 本节从如下四个方面讨论TCP协议: TCP头部信息:指定通信的源端端口号.目的端端口号.管理TCP连接,控制两个方向的数据流 TCP状态转移过程:TCP连接的任意一 ...
- Linux高性能服务器编程,书中的 shell 命令
记录<Linux高性能服务器编程>书里面讲解到的若干 shell 命令 arp 命令查看ARP高速缓存: [root@VM_0_10_centos heliang]# arp -a ? ( ...
- Linux 高性能服务器编程——多线程编程
问题聚焦: 在简单地介绍线程的基本知识之后,主要讨论三个方面的内容: 1 创建线程和结束线程: 2 读取和设置线程属性: 3 线程同步方式:POSIX信号量,互斥锁和条件变量 ...
- Linux 高性能服务器编程——I/O复用
问题聚焦: 前篇提到了I/O处理单元的四种I/O模型. 本篇详细介绍实现这些I/O模型所用到的相关技术. 核心思想:I/O复用 使用情景: 客户端程序要同时处理多个socket ...
- Linux 高性能服务器编程——高性能服务器程序框架
问题聚焦: 核心章节. 服务器一般分为如下三个主要模块:I/O处理单元(四种I/O模型,两种高效事件处理模块),逻辑单元(两种高效并发模式,有效状态机)和存储单元(不讨论). 服务器模 ...
- Linux 高性能服务器编程——Linux服务器程序规范
问题聚焦: 除了网络通信外,服务器程序通常还必须考虑许多其他细节问题,这些细节问题涉及面逛且零碎,而且基本上是模板式的,所以称之为服务器程序规范. 工欲善其事,必先利其器,这篇主要来探 ...
- Linux 高性能服务器编程——IP协议详解
1 IP服务特点 IP协议是TCP/IP协议族的动力,它为上层协议提供无状态.无连接.不可靠的服务. 无状态:IP通信双方不同步传输数据的状态信息,因此IP数据包的发送.传输和接收都是无序的. ...
随机推荐
- 使用 dotnet cli 命令上传 nuget 程序包
前言 前面写了一篇文章介绍了如何将自己的程序集打包成nuget package并上传到nuget.org,传送门.全部是通过网页端来进行操作的,现在介绍一种比较方便快捷的方法就是用dotnet cli ...
- 深入理解事件(Event)
前言 在前一篇文章中讲到了Event 发布与订阅(一) 里面用到了事件来实现一些发布与订阅,当时对事件及其委托理解的还不是太深入,可能在使用上有点捉急.这篇来好好讲讲事件,以及通过一些小DEMO来加深 ...
- [BJOI 2010]次小生成树Tree
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一 ...
- [Codeforces 864D]Make a Permutation!
Description Ivan has an array consisting of n elements. Each of the elements is an integer from 1 to ...
- bzoj4919 [Lydsy1706月赛]大根堆
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
- [SCOI2009]围豆豆
Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...
- ●BZOJ 4407 于神之怒加强版
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...
- [ZJOI2006]物流运输 SPFA+DP
题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...
- 中断下半部处理之tasklet
1.tasklet概述 下半部和退后执行的工作,软中断的使用只在那些执行频率很高和连续性要求很高的情况下才需要.在大多数情况下,为了控制一个寻常的硬件设备,tasklet机制都是实现自己下半部的最佳选 ...
- UVA129 —— Krypton Factor (氪因素)
Input and Output In order to provide the Quiz Master with a potentially unlimited source of question ...