https://www.kaggle.com/kakauandme/tensorflow-deep-nn

本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接

import numpy as np
import pandas as pd
import tensorflow # settings
LEARNING_RATE = 1e-4
# set to 20000 on local environment to get 0.99 accuracy
TRAINING_ITERATIONS = 20000 DROPOUT = 0.5
BATCH_SIZE = 50 # set to 0 to train on all available data
VALIDATION_SIZE = 2000 # image number to output
IMAGE_TO_DISPLAY = 10 # read training data from CSV file
data = pd.read_csv('D://kaggle//DigitRecognizer//data//train.csv') images = data.iloc[:,1:].values
images = images.astype(np.float)
# convert from [0:255] => [0.0:1.0]
images = np.multiply(images, 1.0 / 255.0) image_size = images.shape[1]
print ('image_size => {0}'.format(image_size)) # in this case all images are square
image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8) print ('image_width => {0}\nimage_height => {1}'.format(image_width,image_height)) labels_flat = data.iloc[:,0].values print('labels_flat({0})'.format(len(labels_flat)))
print ('labels_flat[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels_flat[IMAGE_TO_DISPLAY])) labels_count = np.unique(labels_flat).shape[0] print('labels_count => {0}'.format(labels_count)) def dense_to_one_hot(labels_dense, num_classes):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8) print('labels({0[0]},{0[1]})'.format(labels.shape))
print ('labels[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels[IMAGE_TO_DISPLAY])) # split data into training & validation
validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE] train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:] print('train_images({0[0]},{0[1]})'.format(train_images.shape))
print('validation_images({0[0]},{0[1]})'.format(validation_images.shape)) # weight initialization
def weight_variable(shape):
initial = tensorflow.truncated_normal(shape, stddev=0.1)
return tensorflow.Variable(initial) def bias_variable(shape):
initial = tensorflow.constant(0.1, shape=shape)
return tensorflow.Variable(initial) # convolution
def conv2d(x, W):
return tensorflow.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # pooling
# [[0,3],
# [4,2]] => 4 # [[0,1],
# [1,1]] => 1 def max_pool_2x2(x):
return tensorflow.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # input & output of NN # images
x = tensorflow.placeholder('float', shape=[None, image_size])
# labels
y_ = tensorflow.placeholder('float', shape=[None, labels_count]) # first convolutional layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) # (40000,784) => (40000,28,28,1)
image = tensorflow.reshape(x, [-1,image_width , image_height,1])
#print (image.get_shape()) # =>(40000,28,28,1) h_conv1 = tensorflow.nn.relu(conv2d(image, W_conv1) + b_conv1)
#print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)
#print (h_pool1.get_shape()) # => (40000, 14, 14, 32) # Prepare for visualization
# display 32 fetures in 4 by 8 grid
layer1 = tensorflow.reshape(h_conv1, (-1, image_height, image_width, 4 ,8)) # reorder so the channels are in the first dimension, x and y follow.
layer1 = tensorflow.transpose(layer1, (0, 3, 1, 4,2)) layer1 = tensorflow.reshape(layer1, (-1, image_height*4, image_width*8)) # second convolutional layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tensorflow.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)
#print (h_pool2.get_shape()) # => (40000, 7, 7, 64) # Prepare for visualization
# display 64 fetures in 4 by 16 grid
layer2 = tensorflow.reshape(h_conv2, (-1, 14, 14, 4 ,16)) # reorder so the channels are in the first dimension, x and y follow.
layer2 = tensorflow.transpose(layer2, (0, 3, 1, 4,2)) layer2 = tensorflow.reshape(layer2, (-1, 14*4, 14*16)) # densely connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) # (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tensorflow.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tensorflow.nn.relu(tensorflow.matmul(h_pool2_flat, W_fc1) + b_fc1)
#print (h_fc1.get_shape()) # => (40000, 1024) # dropout
keep_prob = tensorflow.placeholder('float')
h_fc1_drop = tensorflow.nn.dropout(h_fc1, keep_prob) # readout layer for deep net
W_fc2 = weight_variable([1024, labels_count])
b_fc2 = bias_variable([labels_count]) y = tensorflow.nn.softmax(tensorflow.matmul(h_fc1_drop, W_fc2) + b_fc2) #print (y.get_shape()) # => (40000, 10) # cost function
cross_entropy = -tensorflow.reduce_sum(y_*tensorflow.log(y)) # optimisation function
train_step = tensorflow.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy) # evaluation
correct_prediction = tensorflow.equal(tensorflow.argmax(y,1),tensorflow.argmax(y_,1)) accuracy = tensorflow.reduce_mean(tensorflow.cast(correct_prediction, 'float')) # prediction function
#[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1
predict = tensorflow.argmax(y,1) epochs_completed = 0
index_in_epoch = 0
num_examples = train_images.shape[0] # serve data by batches
def next_batch(batch_size): global train_images
global train_labels
global index_in_epoch
global epochs_completed start = index_in_epoch
index_in_epoch += batch_size # when all trainig data have been already used, it is reorder randomly
if index_in_epoch > num_examples:
# finished epoch
epochs_completed += 1
# shuffle the data
perm = np.arange(num_examples)
np.random.shuffle(perm)
train_images = train_images[perm]
train_labels = train_labels[perm]
# start next epoch
start = 0
index_in_epoch = batch_size
assert batch_size <= num_examples
end = index_in_epoch
return train_images[start:end], train_labels[start:end] # start TensorFlow session
init = tensorflow.initialize_all_variables()
sess = tensorflow.InteractiveSession() sess.run(init) # visualisation variables
train_accuracies = []
validation_accuracies = []
x_range = [] display_step=1 for i in range(TRAINING_ITERATIONS): #get new batch
batch_xs, batch_ys = next_batch(BATCH_SIZE) # check progress on every 1st,2nd,...,10th,20th,...,100th... step
if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS: train_accuracy = accuracy.eval(feed_dict={x:batch_xs,
y_: batch_ys,
keep_prob: 1.0})
if(VALIDATION_SIZE):
validation_accuracy = accuracy.eval(feed_dict={ x: validation_images[0:BATCH_SIZE],
y_: validation_labels[0:BATCH_SIZE],
keep_prob: 1.0})
print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i)) validation_accuracies.append(validation_accuracy) else:
print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
train_accuracies.append(train_accuracy)
x_range.append(i) # increase display_step
if i%(display_step*10) == 0 and i:
display_step *= 10
# train on batch
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT}) # read test data from CSV file
test_images = pd.read_csv('D://kaggle//DigitRecognizer//data//test.csv').values
test_images = test_images.astype(np.float) # convert from [0:255] => [0.0:1.0]
test_images = np.multiply(test_images, 1.0 / 255.0) print('test_images({0[0]},{0[1]})'.format(test_images.shape)) # predict test set
#predicted_lables = predict.eval(feed_dict={x: test_images, keep_prob: 1.0}) # using batches is more resource efficient
predicted_lables = np.zeros(test_images.shape[0])
for i in range(0,test_images.shape[0]//BATCH_SIZE):
predicted_lables[i*BATCH_SIZE : (i+1)*BATCH_SIZE] = predict.eval(feed_dict={x: test_images[i*BATCH_SIZE : (i+1)*BATCH_SIZE],
keep_prob: 1.0}) print('predicted_lables({0})'.format(len(predicted_lables))) # output test image and prediction
# display(test_images[IMAGE_TO_DISPLAY])
print ('predicted_lables[{0}] => {1}'.format(IMAGE_TO_DISPLAY,predicted_lables[IMAGE_TO_DISPLAY])) # save results
np.savetxt('D://kaggle//DigitRecognizer//submission_softmax.csv',
np.c_[range(1,len(test_images)+1),predicted_lables],
delimiter=',',
header = 'ImageId,Label',
comments = '',
fmt='%d')
layer1_grid = layer1.eval(feed_dict={x: test_images[IMAGE_TO_DISPLAY:IMAGE_TO_DISPLAY+1], keep_prob: 1.0})
sess.close()

tensorflow 手写数字识别的更多相关文章

  1. Tensorflow手写数字识别(交叉熵)练习

    # coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #pr ...

  2. Tensorflow手写数字识别训练(梯度下降法)

    # coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #p ...

  3. Tensorflow手写数字识别---MNIST

    MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000

  4. tensorflow手写数字识别(有注释)

    import tensorflow as tf import numpy as np # const = tf.constant(2.0, name='const') # b = tf.placeho ...

  5. 卷积神经网络应用于tensorflow手写数字识别(第三版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  6. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  7. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  8. 手写数字识别 ----在已经训练好的数据上根据28*28的图片获取识别概率(基于Tensorflow,Python)

    通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Pytho ...

  9. 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...

随机推荐

  1. cuda by example【读书笔记1】

    cuda 1. 以前用OpenGL和DirectX API简介操作GPU,必须了解图形学的知识,直接操作GPU要考虑并发,原子操作等等,cuda架构为此专门设计.满足浮点运算,用裁剪后的指令集执行通用 ...

  2. System.Data.Entity.Internal.AppConfig"的类型初始值设定项引发异常

    在学习EF code First的小案例的时候,遇见了这个异常 <configSections> <!-- For more information on Entity Framew ...

  3. mysql四大特性与四种隔离级别

    四大特性 1:原子性.事务是一个不可分割的整体,事务开始的操作,要么全部执行,要么全部不执行. 2:隔离性.同一时间,只允许一个事务请求同一组数据.不同的事务彼此之间没有干扰. 3:一致性.事务开始前 ...

  4. Java基础知识➣网络Socket(六)

    概述 网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来. java.net 包中提供了两种常见的网络协议的支持: TCP:TCP 是传输控制协议的缩写,它保障了两个应用程序之 ...

  5. 【Android】android:windowSoftInputMode属性详解

    activity主窗口与软键盘的交互模式,可以用来避免输入法面板遮挡问题,Android1.5后的一个新特性. 这个属性能影响两件事情: [一]当有焦点产生时,软键盘是隐藏还是显示 [二]是否减少活动 ...

  6. ionic2程序调试

    新手一枚,之前一直做.net开发,最近接触Ionic2,也没有人带,只能自己一点点抠文档,查资料.一直苦于无法直接调试打包发不好的app,只能在代码里面加上alert一点一点的抛出要看信息,感觉就像瞎 ...

  7. Python 经典类和新式类

    #!/usr/bin/env python# -*- coding:utf-8 -*-# 作者:Presley# 邮箱:1209989516@qq.com# 时间:2018-10-21# 新式类和经典 ...

  8. 初识Linux系统

    1. pwd 显示现在所在位置 2. ls 显示目录下的文件 ls -a:显示隐藏文件(带 . 的就是隐藏文件): ls -a -l :每个文件夹的详细信息: ls > bbb (把查到的所有文 ...

  9. 左连接不能与or否则in连用

    select  z.sjssny,z.XXSE,z.JXSE,z.nsrsbh, nsr.zgswskfj_dm,nsr.nsrmc,nsr.zgswj_dm,nsr.SSGLY_DM,nsr.nsr ...

  10. CentOS 7开机出现welcome to emergency mode! 解决方法

    CentOS7.3昨天用的还好好的的,但是今天开机提示如下(如图提示):welcome to emergency mode!after logging in ,type “journalctl -xb ...