【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
题面
题解
先看懂这题目在干什么。
首先BZOJ上面的题面没有图,换到洛谷看题就有图了。
不难发现都相邻的两个异色棋子放在一起的时候,此时的先手无论怎么动,后手直接把棋子靠上去,这样子一定是先手先无法移动。即先手必败。
把相邻的黑白棋子配对,不难发现这个玩意就是一个\(NimK\)游戏了。
考虑\(NimK\)游戏是怎么来的,即把每堆石子转为二进制之后,检查是否每一位上的棋子数量都是\(K+1\)的倍数,如果是,则先手必败。否则先手必胜。
那么这样子可以\(dp\)了。
设\(f[i][j]\)表示当前考虑到了二进制上的第\(i\)位,总共放了\(j\)个石子的先手必败的方案数。
这样子用总的放置方案数减去必败的方案数就可以得到必胜的方案数了。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 10010
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){if(m>n)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int f[15][MAX],n,K,d,ans;
int main()
{
scanf("%d%d%d",&n,&K,&d);
n-=K;K>>=1;jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n+K+K;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=n+K+K;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n+K+K;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
f[0][0]=1;
for(int j=0;j<=13;++j)
for(int i=0;i<=n;++i)
if(f[j][i])
for(int k=0;k<=K;k+=d+1)
if(i+(1<<j)*k<=n)add(f[j+1][i+(1<<j)*k],1ll*f[j][i]*C(K,k)%MOD);
for(int i=0;i<=n;++i)add(ans,1ll*f[14][i]*C(n-i+K,K)%MOD);
ans=(C(n+2*K,2*K)+MOD-ans)%MOD;
printf("%d\n",ans);
return 0;
}
【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)的更多相关文章
- BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- luoguP2490 [SDOI2011]黑白棋 博弈论 + 动态规划
博弈部分是自己想出来的,\(dp\)的部分最后出了点差错QAQ 从简单的情况入手 比如\(k = 2\) 如果有这样的局面:$\circ \bullet $,那么先手必输,因为不论先手怎样移动,对手都 ...
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- BZOJ 2281 Luogu P2490 [SDOI2011]黑白棋 (博弈论、DP计数)
怎么SDOI2011和SDOI2019的两道题这么像啊..(虽然并不完全一样) 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?i ...
- bzoj2281 [Sdoi2011]黑白棋
一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...
- BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】
题目 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子 ...
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...
随机推荐
- (转)Ubuntu无法找到add-apt-repository问题的解决方法
原文 网上查了一下资料,原来是需要 python-software-properties 于是 apt-get install python-software-properties 除此之外还要安装 ...
- odoo订餐系统之订单相关知识点理解
1.对重载函数name_get的理解 第一,此函数位于Model基类中,返回值是一个list列表,列表中的每个值是如(key,value)形式的键值对,此处为(id,name). 第二,在自己的Mod ...
- Luogu P2286 [HNOI2004]宠物收养场
一道比较简单的直接Treap运用题目,思维难度和代码难度都不是很高. 题意有点长,我们仔细剖析一下题意发现以下几个关键: 任何时候收养站里只可能有人和宠物中的其中一种,或者都没有 如果只有宠物并有人来 ...
- Centos7 64位 -- glibc-2.29 编译升级方法(已成功)
某软件出现漏洞,需要升级解决(忘了哪个)结果提示glibc版本过低. 懵懂无知的我以为glibc想其他软件一样编译升级一下就好.. 结果? 重装系统! 说真的,如非必要(或学习),请勿升级 glibc ...
- Python 学习 第六篇:迭代和解析
Python中的迭代是指按照元素的顺序逐个调用的过程,迭代概念包括:迭代协议.可迭代对象和迭代器三个概念. 迭代协议是指有__next__()函数的对象会前进到下一个结果,而到达系列的末尾时,则会引发 ...
- supervisord监控服务必备命令
supervisord(http://supervisord.org/introduction.html)是一个非常优秀的进程管理工具,使用Python开发.它可以在类UNIX系统的方式让用户来准确地 ...
- SQL调优日记--并行等待的原理和问题排查
概述 今天处理项目,客户反应数据库在某个时间段,反应特别慢.需要我们提供一些优化建议. 现象 由于是特定的时间段慢,排查起来就比较方便.直接查看这个时间段数据库的等待情况.查看等待类型发现了大量的CX ...
- Jmeter(三十)_TimeShift函数在JSR223中的使用
今天学习一下TimeShift函数在JSR223中的使用方法. 关联之前的一篇时间戳文章:Jmeter(十二)_打印时间戳 首先,创建线程组,在线程组下面创建一个JSR223采样器 选择Groovy语 ...
- MSF MS11-050/10-087/Adobe攻击实践及内存保护技术
MSF MS11-050/10-087/Adobe攻击实践及内存保护技术 内存攻击指的是攻击者利用软件安全漏洞,构造恶意输入导致软件在处理输入数据时出现非预期错误,将输入数据写入内存中的某些特定敏感位 ...
- 20135337——Linux实践三:程序破解
程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...