CodeForces 464E The Classic Problem | 呆克斯歘 主席树维护高精度
题意描述
有一个\(n\)点\(m\)边的无向图,第\(i\)条边的边权是\(2^{a_i}\)。求点\(s\)到点\(t\)的最短路长度(对\(10^9 + 7\)取模)。
题解
思路很简单——用主席树维护每个点的\(dis\)。因为每次更新某个点\(v\)的\(dis_v\)的时候,新的\(dis_v\)都是某个点\(u\)的\(dis_u + 2^{w_{u, v}}\),相当于在原先\(u\)对应的主席树基础上修改,得到新的一棵主席树,作为\(v\)对应的主席树。
主席树(线段树)维护二进制高精度怎么维护呢?像松松松那么维护就好了 = =
需(wǒ)要(fàn)注(guò)意的问题:
- 如果你用
priority_queue
来做Dijkstra,又中途修改了节点对应的dis,会影响堆的性质,会WA。正确做法是在priority_queue
传pair<节点编号,当前dis>
。 - 主席树的空间要适当优化优化?例如查询操作的时候,pushdown会创造新的节点,但是以后就不会用到这群节点了,于是一次完整的查询操作之后把这些新节点都删掉就好了,空间可以得到明显优化。
代码
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define space putchar(' ')
#define enter putchar('\n')
typedef long long ll;
using namespace std;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100100, M = 40000007, mod = 1000000007, P = 1000000021;
int n, s, t, maxn = 100098, m, hsh100[N], hsh111[N], ans100[N], ans111[N];
int ecnt, adj[N], nxt[2*N], go[2*N], w[2*N], pre[N], stk[N], top;
int ls[M], rs[M], hsh[M], ans[M], tot, root[N];
bool lazy[M], vis[N];
void adde(int u, int v, int ww){
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
w[ecnt] = ww;
}
int newnode(int old){
int k = ++tot;
ls[k] = ls[old], rs[k] = rs[old];
hsh[k] = hsh[old], ans[k] = ans[old], lazy[k] = lazy[old];
return k;
}
int pushdown(int k){
if(!lazy[k]) return newnode(k);
k = newnode(k);
lazy[k] = 0;
ls[k] = newnode(ls[k]), rs[k] = newnode(rs[k]);
lazy[ls[k]] = lazy[rs[k]] = 1;
hsh[ls[k]] = hsh[rs[k]] = ans[ls[k]] = ans[rs[k]] = 0;
return k;
}
int change0(int k, int l, int r, int ql, int qr){
if(ql <= l && qr >= r) return k = newnode(k), lazy[k] = 1, hsh[k] = ans[k] = 0, k;
k = pushdown(k);
int mid = (l + r) >> 1;
if(ql <= mid) ls[k] = change0(ls[k], l, mid, ql, qr);
if(qr > mid) rs[k] = change0(rs[k], mid + 1, r, ql, qr);
hsh[k] = (hsh[ls[k]] + (ll)hsh[rs[k]] * hsh100[mid - l + 1]) % P;
ans[k] = (ans[ls[k]] + (ll)ans[rs[k]] * ans100[mid - l + 1]) % mod;
return k;
}
int change1(int k, int l, int r, int p){
if(l == r) return k = newnode(k), lazy[k] = 0, hsh[k] = ans[k] = 1, k;
k = pushdown(k);
int mid = (l + r) >> 1;
if(p <= mid) ls[k] = change1(ls[k], l, mid, p);
else rs[k] = change1(rs[k], mid + 1, r, p);
hsh[k] = (hsh[ls[k]] + (ll)hsh[rs[k]] * hsh100[mid - l + 1]) % P;
ans[k] = (ans[ls[k]] + (ll)ans[rs[k]] * ans100[mid - l + 1]) % mod;
return k;
}
int find0(int k, int l, int r, int ql, int qr){
if(hsh[k] == hsh111[r - l + 1] && ans[k] == ans111[r - l + 1]) return -1;
if(l == r) return l;
k = pushdown(k);
int mid = (l + r) >> 1;
if(ql > mid) return find0(rs[k], mid + 1, r, ql, qr);
int ret = find0(ls[k], l, mid, ql, qr);
if(ret != -1) return ret;
return find0(rs[k], mid + 1, r, ql, qr);
}
int add(int k, int p){
int mem_tot = tot;
int q = find0(k, 0, maxn, p, maxn);
tot = mem_tot;
k = change1(k, 0, maxn, q);
if(p < q) k = change0(k, 0, maxn, p, q - 1);
return k;
}
bool diff(int k1, int k2, int l, int r){
if(l == r) return hsh[k1] < hsh[k2];
k1 = pushdown(k1), k2 = pushdown(k2);
int mid = (l + r) >> 1;
if(hsh[rs[k1]] == hsh[rs[k2]] && ans[rs[k1]] == ans[rs[k2]])
return diff(ls[k1], ls[k2], l, mid);
else return diff(rs[k1], rs[k2], mid + 1, r);
}
struct Data {
int node, root;
bool operator < (const Data &b) const {
int mem_tot = tot;
bool ret = diff(b.root, root, 0, maxn);
tot = mem_tot;
return ret;
}
};
priority_queue <Data> que;
int main(){
read(n), read(m);
hsh100[0] = ans100[0] = 1;
for(int i = 1; i <= maxn + 1; i++){
hsh100[i] = hsh100[i - 1] * 2 % P;
ans100[i] = ans100[i - 1] * 2 % mod;
hsh111[i] = (hsh100[i] - 1 + P) % P;
ans111[i] = (ans100[i] - 1 + mod) % mod;
}
for(int i = 1, u, v, ww; i <= m; i++)
read(u), read(v), read(ww), adde(u, v, ww), adde(v, u, ww);
read(s), read(t);
root[0] = add(0, maxn - 1);
for(int i = 1; i <= n; i++)
if(i != s) root[i] = root[0];
que.push((Data){s, root[s]});
while(!que.empty()){
int u = que.top().node;
que.pop();
if(vis[u]) continue;
vis[u] = 1;
for(int e = adj[u], v; e; e = nxt[e]){
v = go[e];
int tmp = add(root[u], w[e]);
if(diff(tmp, root[v], 0, maxn))
root[v] = tmp, pre[v] = u, que.push((Data){v, root[v]});
}
}
if(ans[root[t]] == ans100[maxn - 1] && hsh[root[t]] == hsh100[maxn - 1])
return puts("-1"), 0;
write(ans[root[t]]), enter;
stk[++top] = t;
while(pre[stk[top]]) stk[top + 1] = pre[stk[top]], top++;
write(top), enter;
while(top) write(stk[top--]), top ? space : enter;
return 0;
}
CodeForces 464E The Classic Problem | 呆克斯歘 主席树维护高精度的更多相关文章
- [Codeforces 464E] The Classic Problem(可持久化线段树)
[Codeforces 464E] The Classic Problem(可持久化线段树) 题面 给出一个带权无向图,每条边的边权是\(2^{x_i}(x_i<10^5)\),求s到t的最短路 ...
- Codeforces 464E. The Classic Problem
题目大意 给定一张$n$个点, $m$条边的无向图,求$S$ 到$T$的最短路,其中边权都是$2^k$的形式$n,m,k<=10^5$,结果对$10^9+7$取模 题解 大佬好厉害 跑一边dij ...
- Codeforces 464E The Classic Problem (最短路 + 主席树 + hash)
题意及思路 这个题加深了我对主席树的理解,是个好题.每次更新某个点的距离时,是以之前对这个点的插入操作形成的线段树为基础,在O(logn)的时间中造出了一颗新的线段树,相比直接创建n颗线段树更省时间. ...
- Codeforces 464E The Classic Problem(主席树+最短路+哈希,神仙题)
题目链接 题意:给出一张 \(n\) 个点 \(m\) 条边的无向图,第 \(i\) 条边连接 \(u_i,v_i\),边权为 \(2^{w_i}\),求 \(s\) 到 \(t\) 的最短路. \( ...
- 【主席树维护mex】 【SG函数递推】 Problem H. Cups and Beans 2017.8.11
Problem H. Cups and Beans 2017.8.11 原题: There are N cups numbered 0 through N − 1. For each i(1 ≤ i ...
- Codeforces 960 二进制构造子序列 完全二叉树shift模拟 主席树/MAP DP
A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...
- HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)
Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...
- Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...
- CF 464E The Classic Problem
补一补之前听课时候的题. 考虑使用dij算法求最短路,因为边权存不下,所以考虑用主席树维护二进制位,因为每一次都只会在一个位置进行修改,所以可以暴力进位,这样均摊复杂度是对的. <算法导论> ...
随机推荐
- 《Java程序设计》教学进程
<Java程序设计>教学进程 目录 考核方式 课前准备 教学进程 第00周学习任务和要求 第01周学习任务和要求 第02周学习任务和要求 第03周学习任务和要求 第04周学习任务和要求 第 ...
- Codeforces 718C solution
C. Sasha and Array time limit per test : 5 seconds memory limit per test : 256 megabytes Descrip ...
- Caffe源码中caffe.proto文件分析
Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下caffe.proto文件. 在src/caffe/proto目录下有一个 ...
- .Net版本依赖之坑引发的搜查
前言 今天上午,一个客户反馈XX消息没有推送到第三方链接.于是我查看了推送日志列表,并没有今天的.接着登录服务器查询文件日志,看到了记录.我们的代码步骤是消息先推送到消息队列,消费消息队列时,记录文件 ...
- 【URLOS开发入门】docker官方系统镜像——Alpine入门教程
我们在进行URLOS应用开发时,经常会用到一些基础系统镜像,如:ubuntu.CentOS.Debian等,我们可以通过docker pull命令直接拉取官方镜像. root@ubuntu:~# do ...
- 作业20171130 final发布 成绩
申诉 对成绩有疑问或不同意见的同学,请在群里[@杨贵福]. 申诉时间截止2017年12月16日 17:00. 更新 第一周和第二周成绩分别应占比20%和10%,计算时刚好反了.所以同学们的最终成绩有变 ...
- hover设定触发时间间隔
500毫秒执行一次 $(".banner_menu_content li a").hover(function(){ var aa=$(this).text().trim(); s ...
- idea 设置注释
idea和eclipse的注释还是有一些差别的. idea: 类头注释:打开file->setting->Editor->Filr and Code Templates->In ...
- 第二个spring,第三天
陈志棚:成绩的统筹 李天麟:界面音乐 徐侃:代码算法 给位组员继续的完成分配任务.
- 读后感for《一个程序员的生命周期》
我是村里走出来的孩子,妈妈说我也许是家里唯一一个大学生了,家里从选专业开始也赋予我厚望.说实话,上大学是父母经济压力最大的时候.心疼,大概就是早上六七点起床,看到爸爸一夜没睡,带着倦容眼睛红红的还在工 ...