题意:

就是。。。。求a的所有大于b的因子有多少对

算术基本定理求 所有因子 阿欧。。。偷张图。

注意范围 就好  。。。。。

解析:

在1 -1012的范围内求大于b的所有a的因子的对数(有几对)

就等于 在1 -1012的范围内求出a的所有因子 除二  减去  在1 - (b-1)的范围内a的所有因子

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
const int maxn=; LL primes[maxn], vis[maxn];
LL base[maxn], mi[maxn];
int ans = ;
void init()
{
mem(vis,);
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
int T;
init();
int m = ;
scanf("%d",&T);
while(T--)
{
LL S, edge;
scanf("%lld%lld",&S,&edge);
LL x = S;
if(edge * edge >= S){
printf("Case %d: 0\n",++m); continue;
}
LL res = , cnt2 = ;
for(int i=; i < ans && primes[i] * primes[i] <= S; i++)
{
LL cnt = ;
while(S % primes[i] == )
{
cnt++;
S /= primes[i]; }
if(S > ){
base[cnt2] = primes[i];
mi[cnt2++] = cnt;
}
}
if(S > )
{
base[cnt2] = S;
mi[cnt2++] = ;
}
LL temp = ;
for(int i=; i<cnt2; i++)
{
res *= (mi[i]+);
if(base[i] < edge)
temp *= mi[i]; }
printf("Case %d: %lld\n",++m,res/ - temp); } return ;
}

LightOJ - 1341 Aladdin and the Flying Carpet (算术基本定理)的更多相关文章

  1. [LightOJ 1341] Aladdin and the Flying Carpet (算数基本定理(唯一分解定理))

    题目链接: https://vjudge.net/problem/LightOJ-1341 题目描述: 问有几种边长为整数的矩形面积等于a,且矩形的短边不小于b 算数基本定理的知识点:https:// ...

  2. LightOJ 1341 Aladdin and the Flying Carpet 算数基本定理

    题目大意:给出面积n,和最短边m,求能形成的矩形的个数(不能为正方形). 题目思路:根据算数基本定理有: 1.每个数n都能被分解为:n=p1^a1*p2^a2*^p3^a3……pn^an(p为素数); ...

  3. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  4. LightOJ 1341 - Aladdin and the Flying Carpet

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你地毯面积和最小可能边的长度,让你求有几种组合的可能. 题解:这题就厉害 ...

  5. LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria

    题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...

  6. lightoj 1341 Aladdin and the Flying Carpet(算术基本定理)题解

    题意:给一个矩形(非正方形)面积a和最小边长b,要求边长均大于b,求这样的矩形有几个 思路:先用到了之前学的质因数分解,还有一个新的公式: 然后我们可以先算出a的所有约数,因为只算约数个数面积重复,所 ...

  7. LightOJ 1341 Aladdin and the Flying Carpet(唯一分解定理)

    http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. 思路 ...

  8. LightOJ 1341 - Aladdin and the Flying Carpet 基本因子分解

    http://www.lightoj.com/volume_showproblem.php?problem=1341 题意:给你长方形的面积a,边最小为b,问有几种情况. 思路:对a进行素因子分解,再 ...

  9. LightOJ 1341 Aladdin and the Flying Carpet【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1341 题意: 给定一个数,将其拆分成两个数的乘 ...

随机推荐

  1. python descriptor 详解

    descriptor简介 在python中,如果一个新式类定义了__get__, __set__, __delete__方法中的一个或者多个,那么称之为descriptor.descriptor有分为 ...

  2. LNMP 1.x升级到LNMP 1.4教程及注意事项和多PHP版本使用教程

    LNMP 1.x版本基本都可以正常升级到1.4使用1.4的管理脚本和新的功能. 升级管理脚本:wget -c http://soft.vpser.net/lnmp/lnmp1.4.tar.gz &am ...

  3. CRC---循环冗余校验

    typedef unsigned char uchar; typedef unsigned int uint; typedef unsigned short uInt16; uint crc; // ...

  4. Scala学习(七)练习

    控制结构和函数 1. 编写示例程序,展示为什么 package com.horstmann.impatient 不同于 package com package horstmann package im ...

  5. Munge服务部署和测试

    1. 概述2. 下载3. 安装3.1 源码简要说明3.2 编译安装3.3 配置3.4 创建munge.key3.5 启动方式 1. 概述 munge是认证服务,用于生成和验证证书.应用于大规模的HPC ...

  6. SpringBoot日记——ElasticSearch全文检索

    看到标题的那一串英文,对于新手来说一定比较陌生,而说起检索,应该都知道吧. 这个ElasticSearch目前我们的首选,他主要有可以提供快速的存储.搜索.分析海量数据的作用.他是一个分布式搜索服务, ...

  7. React++ node.js ++SQL Sever ++MySQL++ python ++ php ++ java ++ c++ c#++ java ++ android ++ ios ++Linux+

    "C语言在它诞生的那个年代,是非常不错的语言,可惜没有OOP.当项目臃肿到一定程度,人类就不可控了. 为了弥补这个缺陷,C++诞生了.而为了应对各种情况,C++设计的大而全,太多复杂的特性, ...

  8. 思甜雅---关于qq的NABCD的模型分析

    个人连接:http://www.cnblogs.com/xiaoliulang/ 关于QQ的NABCD模型 N--Need 随着电脑的普及,人们在网络上进行交流的时间越来越多,由于现有的交流工具还不是 ...

  9. 【目标跟踪】相关滤波算法之MOSSE

    简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文 ...

  10. 分布式版本控制系统Git的安装与使用(作业2)

    (本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103) 分布式版本控制系统Git的安装与使用 一.安装Git b ...