P1613 跑路

题目描述

小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零。可是小\(A\)偏偏又有赖床的坏毛病。于是为了保住自己的工资,小\(A\)买了一个十分牛B的空间跑路器,每秒钟可以跑\(2^k\)千米(\(k\)是任意自然数)。当然,这个机器是用\(long\) \(int\)存的,所以总跑路长度不能超过\(max\) \(long\) \(int\)千米。小\(A\)的家到公司的路可以看做一个有向图,小\(A\)家为点\(1\),公司为点\(n\),每条边长度均为一千米。小\(A\)想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证\(1\)到\(n\)至少有一条路径。

输入输出格式

输入格式:

第一行两个整数\(n\),\(m\),表示点的个数和边的个数。

接下来m行每行两个数字\(u\),\(v\),表示一条\(u\)到\(v\)的边。

输出格式:

一行一个数字,表示到公司的最少秒数。

说明

\(50\)%的数据满足最优解路径长度\(<=1000\);

\(100\)%的数据满足\(n<=50\),\(m<=10000\),最优解路径长度\(<=\) \(max\) \(long\) \(int\)。


首先,要确保自己的语文水平苟的住,这个鬼机器,每秒跑\(2^kkm\)的话是要跑刚好那么长的,不能多也不能少。

那么岂不是代表,只有长为\(2^kkm\)的链才算是有效边吗?

我们把所有有效边连上,跑最短路不就行了嘛。

如何求有效边?

\(2^k?\)有没有想到什么?

\(2^k=2^{k-1}+2^{k-1}?\)

对,就是倍增啊!

令\(g[u][v][j]\)代表点\(u\)到点\(v\)存在或不存在长度为\(2^j\)的边。

当\(g[u][k][j-1]\)和\(g[k][v][j-1]\)同时存在时,

\(g[u][v][j]\)存在。(\(k\)是枚举的一维)


#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=52;
int g[N][N][70],n,m;
//g[i][j][k]表示i点到j点存在边权为2^k的路
int g0[N][N];
int read()
{
int x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x;
}
queue <int > q;
int used[N],dis[N];
void spfa()
{
memset(used,0,sizeof(used));
used[1]=1;
memset(dis,0x3f,sizeof(dis));
dis[1]=0;
q.push(1);
while(!q.empty())
{
int u=q.front();
q.pop();
used[u]=0;
for(int v=1;v<=n;v++)
if(g0[u][v]&&dis[v]>dis[u]+g0[u][v])
{
dis[v]=dis[u]+g0[u][v];
if(!used[v])
{
used[v]=1;
q.push(v);
}
}
}
} int main()
{
memset(g,0,sizeof(g));
memset(g0,0,sizeof(g0));
n=read(),m=read();
int u,v;
for(int i=1;i<=m;i++)
{
u=read(),v=read();
g[u][v][0]=1;
//f[u][v][0]=v;
}
for(int j=1;j<=64;j++)
for(int k=1;k<=n;k++)
for(u=1;u<=n;u++)
for(v=1;v<=n;v++)
if(g[u][k][j-1]&&g[k][v][j-1])
g[u][v][j]=1;
for(u=1;u<=n;u++)
for(v=1;v<=n;v++)
for(int j=0;j<=64;j++)
if(g[u][v][j])
{
g0[u][v]=1;
break;
}
spfa();
printf("%d\n",dis[n]);
return 0;
}

2018.5.2

洛谷 P1613 跑路 解题报告的更多相关文章

  1. 洛谷P1613 跑路

    P1613 跑路 176通过 539提交 题目提供者该用户不存在 标签倍增动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 这个题的数据.. 题意问题 表意 题目描述 小A的工作不仅繁 ...

  2. 洛谷P1613 跑路(最短路+倍增)

    P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的 ...

  3. 洛谷——P1613 跑路

    P1613 跑路 题目大意: 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B ...

  4. 洛谷 P1613 跑路 题解

    P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的 ...

  5. 洛谷 P1613 跑路 (倍增 + DP + 最短路)

    题目链接:P1613 跑路 题意 给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米.每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最 ...

  6. 洛谷P1613 跑路 图论

    正解:倍增+图论 解题报告: 传送门! 话说这题是真滴很妙啊,,,大概港下QwQ 首先看懂这道题,它是说,只要是1<<k的都能1s跑过,而且每条边的长度都是1,就是说一秒可以跑过1< ...

  7. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  8. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  9. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

随机推荐

  1. 如何构造分层次的 Json 数据

    十年河东,十年河西,莫欺骚年穷...打错个字~_~ 现有如下需求,构造分层次的Json数据,层次结构类似下图: 上图使用EasyUI生成的,静态HTML如下: <html xmlns=" ...

  2. Python代码转c#部分参考样例

    最近在做一部分Pyhton代码转c#代码的工作,以下案例亲自都测试过,现整理出来希望对有帮助的同学提供参考: Python | C# *:first-child{margin-top:0 !impor ...

  3. mysql 多主

    原理:多个msyql/mariadb之间可以实时同步,任意节点的操作可以立即同步到其他节点,底层采用galera插件同步,类似rsync,上层mysql相对于galera是透明的,可以实现多节点同时读 ...

  4. Cobbler自动化批量安装Linux操作系统 - 运维总结

    一.Cobbler简述 Cobbler是一个自动化和简化系统安装的工具,通过使用网络引导来控制和启动安装.Cobbler的特性包括存储库镜像.Kickstart模板和连接电源管理系统.Cobbler通 ...

  5. SpringCloud设定Feign底层实现

    1. 概述 版本: spring-boot:  1.5.9.RELEASE spring-cloud: Dalston.SR5 在默认情况下 spring cloud feign在进行各个子服务之间的 ...

  6. hdu 3038 给区间和,算出多少是错的

    参考博客 How Many Answers Are Wrong Problem Description TT and FF are ... friends. Uh... very very good ...

  7. 实践简单的项目WC

    #include<iostream> #include<fstream> #include<string> #include<Windows.h> us ...

  8. BugPhobia团队篇章:团队管理与Github源代码管理说明

    0x00:序言 To the searching tags, you may well fall in love withhttp://xueba.nlsde.buaa.edu.cn/ 再见,无忧时光 ...

  9. atcoder B - Frog 2 (DP)

    B - Frog 2 Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement There a ...

  10. Docker(十三)-Docker save and load镜像保存

    持久化docker的镜像或容器的方法 Docker的镜像和容器可以有两种方式来导出 docker save #ID or #Name docker export #ID or #Name docker ...