Strange Towers of Hanoi

大体意思是要求\(n\)盘4的的hanoi tower问题。

总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\)

令\(f[i]\)为4塔转移步骤。

\(f[i]=min(f[i],f[k]*2+d[i-k])\)

即先以4塔以上面的\(k\),再以3塔移\(i-k\),最后以4塔移动回去。

可以推广到\(n\)盘\(m\)塔


2018.5.26

POJ 1958 Strange Towers of Hanoi 解题报告的更多相关文章

  1. POJ 1958 Strange Towers of Hanoi

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...

  2. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  3. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  4. 【POJ 1958】 Strange Towers of Hanoi

    [题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...

  5. Strange Towers of Hanoi POJ - 1958(递推)

    题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...

  6. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  7. POJ1958:Strange Towers of Hanoi

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...

  8. Strange Towers of Hanoi

    题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...

  9. poj 2284 That Nice Euler Circuit 解题报告

    That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1975   Accepted ...

随机推荐

  1. ORA-00020:maximum number of processes (150) exceeded

    异常的含义 超过最大的进程数 我们使用下面的语句可以查看与进程(process)的相关参数: 如上所示,这里的最大进程数是150. 问题可能存在的原因 1.应用程序在使用数据库连接池时,使用完成后没有 ...

  2. C#深入理解AutoResetEvent和ManualResetEvent

    当在C#使用多线程时就免不了使用AutoResetEvent和ManualResetEvent类,可以理解这两个类可以通过设置信号来让线程停下来或让线程重新启动,其实与操作系统里的信号量很相似(汗,考 ...

  3. (译)理解 LSTM 网络 (Understanding LSTM Networks by colah)

    @翻译:huangyongye 原文链接: Understanding LSTM Networks 前言:其实之前就已经用过 LSTM 了,是在深度学习框架 keras 上直接用的,但是到现在对LST ...

  4. CentOS搭建V~P~N服务,实现虚拟专用网络

    什么是V-P-N V-P-N即虚拟专用网络,它的功能是:在公用网络上建立专用网络,进行加密通讯. V-P-N网关通过对数据包的加密和数据包目标地址的转换实现远程访问.V-P-N有多种分类方式,主要是按 ...

  5. ABP module-zero +AdminLTE+Bootstrap Table+jQuery权限管理系统第十五节--缓存小结与ABP框架项目中 Redis Cache的实现

    返回总目录:ABP+AdminLTE+Bootstrap Table权限管理系统一期 缓存 为什么要用缓存 为什么要用缓存呢,说缓存之前先说使用缓存的优点. 减少寄宿服务器的往返调用(round-tr ...

  6. PHP 设置调试工具XDebug PHPStorm IDE

    先下载PHP扩展Xdebug https://xdebug.org, 可以复制自己的phpinfo粘贴到https://xdebug.org/wizard.php中, 会生成需要下载的版本, php. ...

  7. sigar开发(java)

    下载sigar,地址:https://yunpan.cn/cBEWbEfdAm98f (提取码:f765) 可以收集的信息 CPU信息:包括基本信息(vendor.model.mhz.cacheSiz ...

  8. Python数据类型-7

    什么数据类型. int 1,2,3用于计算. bool:True,False,用户判断. str:存储少量数据,进行操作 'fjdsal' '二哥','`13243','fdshklj' '战三,李四 ...

  9. 牛客网-小白月赛6-J-洋灰三角

    题目链接https://www.nowcoder.com/acm/contest/136/J 这题我还是不找规律了,老老实实推吧,传说找规律也可以,我还是算了 递推式:f(n)=k*f(n-1)+p ...

  10. A. Make a triangle!

    题意 给你三条边a,b,c问使得构成三角形,需要增加的最少长度是多少 思路 数学了啦 代码 #include<bits/stdc++.h> using namespace std; #de ...