python常用库 - NumPy 和 sklearn入门
Numpy 和 scikit-learn 都是python常用的第三方库。numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得python成为数值计算领域的一大利器;sklearn是python著名的机器学习库,它其中封装了大量的机器学习算法,内置了大量的公开数据集,并且拥有完善的文档,因此成为目前最受欢迎的机器学习学习与实践的工具。
1. NumPy库
首先导入Numpy库
import numpy as np
1.1 numpy.array 与 list
a = [1,2,3,4,5,6] # python内置数组结构
b = np.array(a) # numpy数组结构
python有内置数组结构(list),我们为什么还要使用numpy的数组结构呢?为了回答这个问题,我们先来看看python内置的数组结构有什么样的特点。我们在使用list的时候会发现,list数组中保存的数据类型是不用相同的,可以是字符串、可以是整型数据、甚至可以是个类实例。这种存储方式很使用,为我们使用带来了很多遍历,但是它也承担了消耗大量内存的缺陷或不足。为什么这么说呢?实际上list数组中的每个元素的存储都需要1个指针和1个数据,也就是说list中保存的其实是数据的存放地址(指针),它比原生态的数组多了一个存放指针的内存消耗。因此,当我们想去减少内存消耗时,不妨将list替换成np.array,这样会节省不少的空间,并且Numpy数组是执行更快数值计算的优秀容器。
1.2 numpy常用操作
创建数组
np.array([1,2,3]) # 创建一维数组
np.asarray([1,2,3])
np.array([1,2,3], [4,5,6]) # 创建多维数组 np.zeros((3, 2)) # 3行2列 全0矩阵
np.ones((3, 2)) #全1矩阵
np.full((3, 2), 5) # 3行2列全部填充5
np.array 和 np.asarray 的区别:
def asarray(a, dtype=None, order=None):
return array(a, dtype, copy=False, order=order)
可见,它们区别主要在于: array会复制出一个新的对象,占用一份新的内存空间,而asarray不会执行这一操作。array类似深拷贝,asarray类似浅拷贝。
数值计算
基础计算
arr1 = np.array([[1,2,3], [4,5,6]])
arr2 = np.array([[6,5], [4,3], [2,1]]) # 查看arr维度
print(arr1.shape) # (2, 3) #切片
np.array([1,2,3,4,5,6])[:3] #array([1,2,3])
arr1[0:2,0:2] # 二维切片 #乘法
np.array([1,2,3]) * np.array([2,3,4]) # 对应元素相乘 array([2,6, 12])
arr1.dot(b) # 矩阵乘法 #矩阵求和
np.sum(arr1) # 所有元素之和 21
np.sum(arr1, axis=0) #列求和 array([5, 7, 9])
np.sum(arr1, axis=1) # 行求和 array([ 6, 15]) # 最大最小
np.max(arr1, axis=0/1)
np.min(a, axis=0/1)
进阶计算
arr = np.array([[1,2], [3,4], [5,6]]) #布尔型数组访问方式
print((arr>2))
"""
[[False False]
[ True True]
[ True True]]
"""
print(arr[arr>2]) # [3 4 5 6] #修改形状
arr.reshape(2,3)
"""
array([[1, 2, 3],
[4, 5, 6]])
"""
arr.flatten() # 摊平 array([1, 2, 3, 4, 5, 6])
arr.T # 转置
2. sklearn库
若你想快速使用sklearn,我的另一篇博客应该可以满足您的需求,点击跳转:《ML神器:sklearn的快速使用》
sklearn是python的重要机器学习库,其中封装了大量的机器学习算法,如:分类、回归、降维以及聚类;还包含了监督学习、非监督学习、数据变换三大模块。sklearn拥有完善的文档,使得它具有了上手容易的优势;并它内置了大量的数据集,节省了获取和整理数据集的时间。因而,使其成为了广泛应用的重要的机器学习库。下面简单介绍一下sklearn下的常用方法。
监督学习
sklearn.neighbors #近邻算法
sklearn.svm #支持向量机
sklearn.kernel_ridge #核-岭回归
sklearn.discriminant_analysis #判别分析
sklearn.linear_model #广义线性模型 sklearn.ensemble #集成学习
sklearn.tree #决策树
sklearn.naive_bayes #朴素贝叶斯
sklearn.cross_decomposition #交叉分解
sklearn.gaussian_process #高斯过程 sklearn.neural_network #神经网络
sklearn.calibration #概率校准
sklearn.isotonic #保守回归
sklearn.feature_selection #特征选择
sklearn.multiclass #多类多标签算法
以上的每个模型都包含多个算法,在调用时直接import即可,譬如:
from sklearn.linear_model import LogisticRefression
lr_model = LogisticRegression()
无监督学习
sklearn.decomposition #矩阵因子分解
sklearn.cluster # 聚类
sklearn.manifold # 流形学习
sklearn.mixture # 高斯混合模型
sklearn.neural_network # 无监督神经网络
sklearn.covariance # 协方差估计
数据变换
sklearn.feature_extraction # 特征提取
sklearn.feature_selection # 特征选择
sklearn.preprocessing # 预处理
sklearn.random_projection # 随机投影
sklearn.kernel_approximation # 核逼近
数据集
此外,sklearn还有统一的API接口,我们通常可以通过使用完全相同的接口来实现不同的机器学习算法,一般实现流程:
step1. 数据加载和预处理
step2. 定义分类器, 比如: lr_model = LogisticRegression()
step3. 使用训练集训练模型 : lr_model.fit(X,Y)
step4. 使用训练好的模型进行预测: y_pred = lr_model.predict(X_test)
step5. 对模型进行性能评估:lr_model.score(X_test, y_test)
常见命令:
1. 数据集分割
# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split
X, y = np.arange(10).reshape((5, 2)), range(5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签 test_size:
float-获得多大比重的测试样本 (默认:0.25)
int - 获得多少个测试样本 train_size: 同test_size random_state:
int - 随机种子(种子固定,实验可复现)
shuffle - 是否在分割之前对数据进行洗牌(默认True) 返回
---
分割后的列表,长度=2*len(arrays),
(train-test split)
"""
python常用库 - NumPy 和 sklearn入门的更多相关文章
- python 常用库整理
python 常用库整理 GUI 图形界面 Tkinter: Tkinter wxPython:wxPython pyGTK:PyGTK pyQt:pyQt WEB框架 django:django w ...
- Python 机器学习库 NumPy 教程
0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...
- Python常用库整理
Python常用库整理 Python中到底有哪些库会让程序员爱不释手?以至于一次上瘾,造成永久性伤害(这句话好像在哪里见过),今天我们就来整理一番这样的库,欢迎各位在评论区或者私信我添加或者修改相关库 ...
- python常用库安装网址
python常用库安装网址如下: http://pypi.python.org/pypi
- windows下python常用库的安装
windows下python常用库的安装,前提安装了annaconda 的python开发环境.只要已经安装了anaconda,要安装别的库就很简单了.只要使用pip即可,正常安装好python,都会 ...
- python常用库(转)
转自http://www.west999.com/info/html/wangluobiancheng/qita/20180729/4410114.html Python常用的库简单介绍一下 fuzz ...
- 数据分析常用库(numpy,pandas,matplotlib,scipy)
概述 numpy numpy(numeric python)是 python 的一个开源数值计算库,主要用于数组和矩阵计算.底层是 C 语言,运行效率远高于纯 python 代码.numpy主要包含2 ...
- python常用库
本文由 伯乐在线 - 艾凌风 翻译,Namco 校稿.未经许可,禁止转载!英文出处:vinta.欢迎加入翻译组. Awesome Python ,这又是一个 Awesome XXX 系列的资源整理,由 ...
- Python常用库大全
环境管理 管理 Python 版本和环境的工具 p – 非常简单的交互式 python 版本管理工具. pyenv – 简单的 Python 版本管理工具. Vex – 可以在虚拟环境中执行命令. v ...
随机推荐
- ELK填坑总结和优化过程
做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~ 一.elk 实用知识点总结 1.编码转换问题(主要就是中文乱码) (1)input 中的codec => plain 转码 cod ...
- 小豆包的学习之旅:占用概率栅格地图和cost-map
接下来将制图和定位问题分别进行介绍.这两个问题可以视为SLAM过程中两个相互联系的子问题,但是也可以视为两个单独的问题.虽然说SLAM问题是鸡和蛋的问题,但是在实际处理过程中总是有先后的.为了简化问题 ...
- Java最小化镜像制作
下载Oracle官网的JRE包,最终下载的包如下: jre-8u181-linux-x64.tar.gz 解压JRE包并删除不必要的文件 #解压 tar xf jre-8u181-linux-x64. ...
- Android R文件介绍
R.java 文件中默认有attr.drawable.layout.string等色哥静态内部类,每个静态内部类分别对应着一种资源,如layout静态内部类对应着layout中的接界面文件,其中每个静 ...
- Eigen子矩阵操作
1 子矩阵操作简介 子矩阵操作又称块操作,在矩阵运算中,子矩阵的提取和操作应用也十分广泛.因此Eigen中也提供了相关操作的方法.提取的子矩阵在操作过程中既可以用作左值也可以用作右值. 2 块操作的一 ...
- 选择困难症的福音——团队Scrum冲刺阶段-Day 2
选择困难症的福音--团队Scrum冲刺阶段-Day 2 今日进展 编写提问部分 如何将不同的问题选项连接到不同的下一个问题 如何保证问题的链接不会弄丢 登陆注册界面 完成密码可见与不可见的更改 ui界 ...
- 快速解决MariaDB无密码就可以登录的问题
mysql Ver 15.1 Distrib 10.1.37-MariaDB, for Linux (x86_64) using readline 5.1 #mysql -uroot -p #del ...
- python_day12_html
目录: 简单web的服务器代码 html简介 html常用标签 一.简单web的服务器代码 1.简单python服务器代码: import socket def main(): sock = sock ...
- ----一个roadmap----
在课上了解到了学web前端三个基础,HTML.CSS.JS 从HTML开始,逐步学习CSS.JS 大致写了一个roadmap(应该是roadmap喔 就是这样,以后可能会来更错或者更新 对没错我来更错 ...
- 学习STM32,你不得不了解的五大嵌入式操作系统
学习STM32,你不得不了解的五大嵌入式操作系统 原标题:学习STM32,你不得不了解的五大嵌入式操作 ...