MapReduce原理
MapReduce原理
WordCount例子
用mapreduce计算wordcount的例子:
package org.apache.hadoop.examples; import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
先看main函数:
Configuration conf = new Configuration();
程序员开发mapreduce时候只是在填空,在map函数和reduce函数里编写实际进行的业务逻辑,其它的工作都是交给mapreduce框架自己操作的,但是至少我们要告诉它怎么操作啊,比如hdfs在哪里啊,mapreduce的jobstracker在哪里啊,而这些信息就在conf包下的配置文件里。因此,运行mapreduce程序前都要初始化Configuration,该类主要是读取mapreduce系统配置信息,这些信息包括hdfs还有mapreduce,也就是安装hadoop时候的配置文件例如:core-site.xml、hdfs-site.xml和mapred-site.xml等等文件里的信息。
接下来的代码是:
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
第一行就是在构建一个job,在mapreduce框架里一个mapreduce任务也叫mapreduce作业也叫做一个mapreduce的job,而具体的map和reduce运算就是task了,这里我们构建一个job,构建时候有两个参数,一个是conf这个就不累述了,一个是这个job的名称。
第二行就是装载程序员编写好的计算程序,例如我们的程序类名就是WordCount了。这里我要做下纠正,虽然我们编写mapreduce程序只需要实现map函数和reduce函数,但是实际开发我们要实现三个类,第三个类是为了配置mapreduce如何运行map和reduce函数,准确的说就是构建一个mapreduce能执行的job了,例如WordCount类。
第三行和第五行就是装载map函数和reduce函数实现类了,这里多了个第四行,这个是装载Combiner类,这个我后面讲mapreduce运行机制时候会讲述,其实本例去掉第四行也没有关系,但是使用了第四行理论上运行效率会更好。
再接下来是:
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
这个是定义输出的key/value的类型,也就是最终存储在hdfs上结果文件的key/value的类型。
最后是:
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
第一行就是构建输入的数据文件,第二行是构建输出的数据文件,最后一行如果job运行成功了,我们的程序就会正常退出。FileInputFormat和FileOutputFormat是很有学问的,我会在下面的mapreduce运行机制里讲解到它们。
MapReduce运行机制
首先讲讲物理实体,mapreduce作业执行涉及4个独立的实体:
- 客户端(Client):编写mapreduce程序,配置作业,提交作业,这就是程序员完成的工作;
- JobTracker:初始化作业,分配作业,与TaskTracker通信,协调整个作业的执行;
- TaskTracker:保持与JobTracker的通信,在分配的数据片段上执行Map或Reduce任务;
- Hdfs:保存作业的数据、配置信息等等,最后的结果也是保存在hdfs上面。
注意:TaskTracker可以有多个,JobTracker则只会有一个(JobTracker只能有一个就和hdfs里namenode一样存在单点故障,我会在后面的mapreduce的相关问题里讲到这个问题的)
首先是客户端要编写好mapreduce程序,配置好mapreduce的作业也就是job,接下来就是提交job了,提交job是提交到JobTracker上的,这个时候JobTracker就会构建这个job,具体就是分配一个新的job任务的ID值,接下来它会做检查操作,这个检查就是确定输出目录是否存在,如果存在那么job就不能正常运行下去,JobTracker会抛出错误给客户端,接下来还要检查输入目录是否存在,如果不存在同样抛出错误,如果存在JobTracker会根据输入计算输入分片(Input Split),如果分片计算不出来也会抛出错误,至于输入分片我后面会做讲解的,这些都做好了JobTracker就会配置Job需要的资源了。分配好资源后,JobTracker就会初始化作业,初始化主要做的是将Job放入一个内部的队列,让配置好的作业调度器能调度到这个作业,作业调度器会初始化这个job,初始化就是创建一个正在运行的job对象(封装任务和记录信息),以便JobTracker跟踪job的状态和进程。
初始化完毕后,作业调度器会获取输入分片信息(input split),每个分片创建一个map任务。接下来就是任务分配了,这个时候tasktracker会运行一个简单的循环机制定期发送心跳给jobtracker,心跳间隔是5秒,程序员可以配置这个时间,心跳就是jobtracker和tasktracker沟通的桥梁,通过心跳,jobtracker可以监控tasktracker是否存活,也可以获取tasktracker处理的状态和问题,同时tasktracker也可以通过心跳里的返回值获取jobtracker给它的操作指令。任务分配好后就是执行任务了。在任务执行时候jobtracker可以通过心跳机制监控tasktracker的状态和进度,同时也能计算出整个job的状态和进度,而tasktracker也可以本地监控自己的状态和进度。当jobtracker获得了最后一个完成指定任务的tasktracker操作成功的通知时候,jobtracker会把整个job状态置为成功,然后当客户端查询job运行状态时候(注意:这个是异步操作),客户端会查到job完成的通知的。如果job中途失败,mapreduce也会有相应机制处理。
下面从逻辑实体的角度讲解mapreduce运行机制,这些按照时间顺序包括:输入分片(input split)、map阶段、combiner阶段、shuffle阶段和reduce阶段。
输入分片(input split)
在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组,输入分片(input split)往往和hdfs的block(块)关系很密切,假如我们设定hdfs的块的大小是64MB,如果我们输入有三个文件,大小分别是3MB、65MB和127MB,那么mapreduce会把3MB文件分为一个输入分片(input split),65MB则是两个输入分片(input split)而127MB也是两个输入分片(input split),换句话说我们如果在map计算前做输入分片调整,例如合并小文件,那么就会有5个map任务将执行,而且每个map执行的数据大小不均,这个也是mapreduce优化计算的一个关键点。
map阶段
就是程序员编写好的map函数了,因此map函数效率相对好控制,而且一般map操作都是本地化操作也就是在数据存储节点上进行;
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {…}
这里有三个参数,前面两个Object key, Text value就是输入的key和value,第三个参数Context context这是可以记录输入的key和value,例如:context.write(word, one); 此外context还会记录map运算的状态。
combiner阶段
combiner阶段是程序员可以选择的,combiner其实也是一种reduce操作,因此我们看见WordCount类里是用reduce进行加载的。Combiner是一个本地化的reduce操作,它是map运算的后续操作,主要是在map计算出中间文件前做一个简单的合并重复key值的操作,例如我们对文件里的单词频率做统计,map计算时候如果碰到一个hadoop的单词就会记录为1,但是这篇文章里hadoop可能会出现n多次,那么map输出文件冗余就会很多,因此在reduce计算前对相同的key做一个合并操作,那么文件会变小,这样就提高了宽带的传输效率,毕竟hadoop计算力宽带资源往往是计算的瓶颈也是最为宝贵的资源,但是combiner操作是有风险的,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。
shuffle阶段
将map的输出作为reduce的输入的过程就是shuffle了,这个是mapreduce优化的重点地方。这里我不讲怎么优化shuffle阶段,讲讲shuffle阶段的原理,因为大部分的书籍里都没讲清楚shuffle阶段。Shuffle一开始就是map阶段做输出操作,一般mapreduce计算的都是海量数据,map输出时候不可能把所有文件都放到内存操作,因此map写入磁盘的过程十分的复杂,更何况map输出时候要对结果进行排序,内存开销是很大的,map在做输出时候会在内存里开启一个环形内存缓冲区,这个缓冲区专门用来输出的,默认大小是100mb,并且在配置文件里为这个缓冲区设定了一个阀值,默认是0.80(这个大小和阀值都是可以在配置文件里进行配置的),同时map还会为输出操作启动一个守护线程,如果缓冲区的内存达到了阀值的80%时候,这个守护线程就会把内容写到磁盘上,这个过程叫spill,另外的20%内存可以继续写入要写进磁盘的数据,写入磁盘和写入内存操作是互不干扰的,如果缓存区被撑满了,那么map就会阻塞写入内存的操作,让写入磁盘操作完成后再继续执行写入内存操作,前面我讲到写入磁盘前会有个排序操作,这个是在写入磁盘操作时候进行,不是在写入内存时候进行的,如果我们定义了combiner函数,那么排序前还会执行combiner操作。
每次spill操作也就是写入磁盘操作时候就会写一个溢出文件,也就是说在做map输出有几次spill就会产生多少个溢出文件,等map输出全部做完后,map会合并这些输出文件。这个过程里还会有一个Partitioner操作,对于这个操作很多人都很迷糊,其实Partitioner操作和map阶段的输入分片(Input split)很像,一个Partitioner对应一个reduce作业,如果我们mapreduce操作只有一个reduce操作,那么Partitioner就只有一个,如果我们有多个reduce操作,那么Partitioner对应的就会有多个,Partitioner因此就是reduce的输入分片,这个程序员可以编程控制,主要是根据实际key和value的值,根据实际业务类型或者为了更好的reduce负载均衡要求进行,这是提高reduce效率的一个关键所在。到了reduce阶段就是合并map输出文件了,Partitioner会找到对应的map输出文件,然后进行复制操作,复制操作时reduce会开启几个复制线程,这些线程默认个数是5个,程序员也可以在配置文件更改复制线程的个数,这个复制过程和map写入磁盘过程类似,也有阀值和内存大小,阀值一样可以在配置文件里配置,而内存大小是直接使用reduce的tasktracker的内存大小,复制时候reduce还会进行排序操作和合并文件操作,这些操作完了就会进行reduce计算了。
reduce阶段
和map函数一样也是程序员编写的,最终结果是存储在hdfs上的。
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {…}
reduce函数的输入也是一个key/value的形式,不过它的value是一个迭代器的形式Iterable<IntWritable> values,也就是说reduce的输入是一个key对应一组的值的value,reduce也有context和map的context作用一致。
相关问题
jobtracker的单点故障
jobtracker和hdfs的namenode一样也存在单点故障,单点故障一直是hadoop被人诟病的大问题,为什么hadoop的做的文件系统和mapreduce计算框架都是高容错的,但是最重要的管理节点的故障机制却如此不好,我认为主要是namenode和jobtracker在实际运行中都是在内存操作,而做到内存的容错就比较复杂了,只有当内存数据被持久化后容错才好做,namenode和jobtracker都可以备份自己持久化的文件,但是这个持久化都会有延迟,因此真的出故障,任然不能整体恢复,另外hadoop框架里包含zookeeper框架,zookeeper可以结合jobtracker,用几台机器同时部署jobtracker,保证一台出故障,有一台马上能补充上,不过这种方式也没法恢复正在跑的mapreduce任务。
输出目录的检查
做mapreduce计算时候,输出一般是一个文件夹,而且该文件夹是不能存在,我在出面试题时候提到了这个问题,而且这个检查做的很早,当我们提交job时候就会进行,mapreduce之所以这么设计是保证数据可靠性,如果输出目录存在reduce就搞不清楚你到底是要追加还是覆盖,不管是追加和覆盖操作都会有可能导致最终结果出问题,mapreduce是做海量数据计算,一个生产计算的成本很高,例如一个job完全执行完可能要几个小时,因此一切影响错误的情况mapreduce是零容忍的。
InputFormat和OutputFormat
我们在编写map函数时候发现map方法的参数是之间操作行数据,没有牵涉到InputFormat,这些事情在我们new Path时候mapreduce计算框架帮我们做好了,而OutputFormat也是reduce帮我们做好了,我们使用什么样的输入文件,就要调用什么样的InputFormat,InputFormat是和我们输入的文件类型相关的,mapreduce里常用的InputFormat有FileInputFormat普通文本文件,SequenceFileInputFormat是指hadoop的序列化文件,另外还有KeyValueTextInputFormat。OutputFormat就是我们想最终存储到hdfs系统上的文件格式了,这个根据你需要定义了,hadoop有支持很多文件格式,这里不一一列举。
MapReduce原理的更多相关文章
- 04 MapReduce原理介绍
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序 定义 * Mapreduce 最早是由googl ...
- 大数据运算模型 MapReduce 原理
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计 ...
- MapReduce原理及其主要实现平台分析
原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 ...
- Hapoop原理及MapReduce原理分析
Hapoop原理 Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,其最核心的设计包括:MapReduce和HDFS.基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序 ...
- Hadoop学习记录(4)|MapReduce原理|API操作使用
MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce( ...
- hadoop笔记之MapReduce原理
MapReduce原理 MapReduce原理 简单来说就是,一个大任务分成多个小的子任务(map),并行执行后,合并结果(reduce). 例子: 100GB的网站访问日志文件,找出访问次数最多的I ...
- MapReduce 原理与 Python 实践
MapReduce 原理与 Python 实践 1. MapReduce 原理 以下是个人在MongoDB和Redis实际应用中总结的Map-Reduce的理解 Hadoop 的 MapReduce ...
- 大数据 --> MapReduce原理与设计思想
MapReduce原理与设计思想 简单解释 MapReduce 算法 一个有趣的例子:你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座 ...
- hadoop自带例子SecondarySort源码分析MapReduce原理
这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 pac ...
随机推荐
- HTML(二)
html段落.换行与字符实体 html段落 <p>标签定义一个文本段落,一个段落含有默认的上下间距,段落之间会用这种默认间距隔开,代码如下: <!DOCTYPE html> & ...
- PAT-Top1001. Battle Over Cities - Hard Version (35)
在敌人占领之前由城市和公路构成的图是连通图.在敌人占领某个城市之后所有通往这个城市的公路就会被破坏,接下来可能需要修复一些其他被毁坏的公路使得剩下的城市能够互通.修复的代价越大,意味着这个城市越重要. ...
- innerHTML innerText与outerHTML间的区别
innerHTML与innerText及outerHTML间的区别最容易使初学者搞混淆,为了更好的使读者区分开.下面我就通过一个demo来解释: 代码: <!DOCTYPE html>&l ...
- HTTP1.1协议-RFC2616-中文版课前资料收集
1.http rfc大致讲了什么? 2.解决了什么问题? HTTP协议描述的是发送方与接收方的通信协议 协议功能: HTTP协议(HyperText Transfer Protocol,超文本传输协议 ...
- oracle跨库连接查询
一.授权(本地客户器端授权当前用户) grant create database link to szfile 第一种连接方法:配置本地数据库服务器的tnsnames.ora文件 SZFILE = ( ...
- 让你提升命令行效率的 Bash 快捷键
生活在 Bash shell 中,熟记以下快捷键,将极大的提高你的命令行操作效率. 编辑命令 Ctrl + a :移到命令行首 Ctrl + e :移到命令行尾 Ctrl + f :按字符前移(右向) ...
- 基于Token的身份认证 与 基于服务器的身份认证
基于Token的身份认证 与 基于服务器的身份认证 基于服务器的身份认证 在讨论基于Token的身份认证是如何工作的以及它的好处之前,我们先来看一下以前我们是怎么做的: HTTP协议是无状态的,也就是 ...
- MySQL匹配指定字符串的查询
MySQL匹配指定字符串的查询 使用正则表达式查询时,正则表达式可以匹配字符串.当表中的记录包含这个字符串时,就可以将该记录查询出来.如果指定多个字符串时,需要用“|”符号隔开,只要匹配这些字符串中的 ...
- Nginx之——日志按日期分割的实现(基于CentOS操作系统)
Nginx自身是没有按日期切割日志的功能,可以用shell脚本实现.新建一个cut_log.sh, #!/bin/sh # Program: # Auto cut nginx log script. ...
- 阿里云配置gitlab邮箱
gitlab_rails['gitlab_email_from'] = 'username@163.com' user['git_user_email'] = "username@163.c ...