题意

给出一个长度为\(n\)的正整数数组\(a\),再给出\(q\)个询问,每次询问给出3个数,\(L,R,X(L<=R)\).求\(a[L]\)至\(a[R]\)这\(R-L+1\)个数中,与\(x\)进行异或运算(Xor),

得到的最大值为多少。

分析

前置知识:通过01字典树可以贪心的得到一个数与若干个数中进行异或运算的最大值。

在这里每次询问我们要得到\(a[L]\)至\(a[R]\)的数与\(x\)进行异或运算的最大值,每次建立区间\([L,R]\)的字典树来查询的话会超时而且浪费了大量空间。

这时我们需要可持久化01字典树!

对每个\(a[i]\)建立\(1\)至\(i\)的字典树(包含\(a[1]\)至\(a[i]\)的值的字典树),每次建立字典树并不需要真的把\(1\)至\(i\)的数一个一个的插入,因为当建立\([1,i]\)的字典树的时候我们可以用\([1,i-1]\)的字典树上面的节点,所以每次建立字典树的时候只需新增\(a[i]\)这一个值的节点,其余节点全用上个版本的字典树的节点。

每次建立字典树用\(sum\)数组记录当前节点(并不是节点的编号,而是在字典树结构中的节点)在\([1,i]\)中出现的次数,当查询至\([L,R]\)区间某节点的时候判断\(sum[son[R][j]]-sum[son[L-1][j]]\)是否大于0,即可知道这个节点是否在\([L,R]\)中出现过。

具体实现在代码中解释。

Code

    #include<bits/stdc++.h>
#define fi first
#define se second
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
const double eps=1e-6;
const int inf=1e9;
const ll mod=1e9+7;
const int maxn=5e4+10;
int n,q;
int a[maxn];
int root[maxn*40];//保存每颗字典树的根节点的数组
int sum[maxn*40];//记录当前字典树每个节点的出现次数的数组
int son[maxn*40][2];
int tot;
int insert(int x,int pre){
int r=++tot,pos=r;
for(int i=30;i>=0;i--){
son[r][0]=son[pre][0];//指向上个版本的字典树中的节点
son[r][1]=son[pre][1];
int j=((x>>i)&1);
son[r][j]=++tot;//新增x的节点
r=son[r][j];pre=son[pre][j];//当前字典树与上个版本的字典树同时向下跑
sum[r]=sum[pre]+1;//将新增的节点的出现次数++
}
return pos;//返回根节点
}
int query(int x,int l,int r){
int ans=0;
for(int i=30;i>=0;i--){
int j=((x>>i)&1);j=!j;
if(sum[son[r][j]]-sum[son[l][j]]>0){//大于0时,表明该节点在区间[l,r]中存在
ans|=(1<<i);
}else{
j=!j;
}
r=son[r][j];l=son[l][j];//两颗字典树同时向下跑
}
return ans;
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>q;
for(int i=1;i<=n;i++){
cin>>a[i];
root[i]=insert(a[i],root[i-1]);
}
while(q--){
int x,l,r;
cin>>x>>l>>r;
cout<<query(x,root[l],root[r+1])<<endl;
}
return 0;
}

51nod 1295 XOR key 可持久化01字典树的更多相关文章

  1. [多校联考2019(Round 4 T1)][51nod 1295]Xor key(可持久化trie)

    [51nod 1295]Xor key(可持久化trie) 题面 给出一个长度为n的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] ...

  2. 51nod 1295 XOR key | 可持久化Trie树

    51nod 1295 XOR key 这也是很久以前就想做的一道板子题了--学了一点可持久化之后我终于会做这道题了! 给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X ...

  3. 51nod 1295 XOR key (可持久化Trie树)

    1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个长度为N的正整数数组A,再给出Q个查 ...

  4. HDU 6191 2017ACM/ICPC广西邀请赛 J Query on A Tree 可持久化01字典树+dfs序

    题意 给一颗\(n\)个节点的带点权的树,以\(1\)为根节点,\(q\)次询问,每次询问给出2个数\(u\),\(x\),求\(u\)的子树中的点上的值与\(x\)异或的值最大为多少 分析 先dfs ...

  5. HDU 4825 Xor Sum(经典01字典树+贪心)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  6. 51nod 1295 XOR key-区间异或最大值-可持久化01Trie树(模板)

    1295 XOR key 2 秒 262,144 KB 160 分 6 级题   给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] ...

  7. 51nod1295 XOR key(可持久化trie)

    1295 XOR key题目来源: HackerRank基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个长度为N的正整数数组A,再给出Q个查询,每个查 ...

  8. 2014百度之星资格赛—— Xor Sum(01字典树)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  9. Codeforces 979 D. Kuro and GCD and XOR and SUM(异或和,01字典树)

    Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...

随机推荐

  1. vuejs组件库pk介绍

    vuejs可以说是近2年多以来最火的前端框架,随之而来就产生了非常多的组件库,我们来看看其中比较著名和人气旺盛的几个 1. Vuetify-符合material design设计理念, star数量7 ...

  2. 多浏览器播放wav格式的音频文件

    html5的audio标签只在火狐下支持wav格式的音频播放,无法兼容IE和google , 使用audioplayer.js 基本上能支持大部分浏览器播放wav音频文件,经测试IE.火狐.googl ...

  3. 实战:阿里巴巴 DevOps 转型后的运维平台建设

    导读:阿里巴巴DevOps转型之后,运维平台是如何建设的?阿里巴巴高级技术专家陈喻结合运维自身的理解,业务场景的分析和业界方法论的一些思考,得出来一些最佳实践分享给大家.   前言   “我是这个应用 ...

  4. cobaltstrike3.8服务器搭建及使用

    参考链接: https://www.ezreal.net/archives/166.htmlhttp://blog.cobaltstrike.com/category/cobalt-strike-2/ ...

  5. Beta冲刺(3/5)(麻瓜制造者)

    今日已完成 邓弘立:完成了登录功能的重构,完成了部分商品管理功能 符天愉:利用ci开始写队友写好的管理员界面,由于后台独立开始使用一个仓库,所以晚上将alpha的版本更新到了git,并且添加了.git ...

  6. 使用requests模块保存网络上的图片

    import requests url = 'https://www.baidu.com/img/bd_logo1.png' r = requests.get(url=url) with open(' ...

  7. 使用golang求出A-Z的所有子集

    参考链接:https://blog.csdn.net/K346K346/article/details/80436430 有一个集合由A-Z这26个字母组成,打印这个集合的所有子集,每个子集一行,写C ...

  8. Properties集合_修改配置信息

    集合中的数据来自于一个文件  注意:必须要保证该文件中的数据是键值对.  需要使用到读取流 使用load()方法读取已有文件中的数据,存储到Properties集合中 public class Pro ...

  9. File类_构造函数

    File类:用来将文件或者文件夹封装成对象方便对文件或或文件夹的属性信息进行操作File对象可以作为参数传递给流的构造函数 import java.io.File; public class File ...

  10. python五十八课——正则表达式(替换)

    替换:sub(regex,repl,string,count,[flags=0]): 替换数据,返回字符串(已经被替换完成后的内容)subn(regex,repl,string,count,[flag ...