传送门


考虑如何使用FFT计算两个子串是否匹配。如果字符集比较小可以把每个字符都拿出来暴力做一遍,但是字符集比较大的时候复杂度就会有问题。这个时候可以考虑匹配函数。

先考虑没有通配符的情况。将\(A\)串翻转,然后设匹配函数\(chk(i,j) = (A_i - B_j)^2\)。不难知道\(A_i = B_j \Leftrightarrow chk(i,j) = 0\)。

又设\(C(x) = \sum\limits_{i=1}^m chk(m + 1 - i , x + i - 1)\),那么\(B\)的以\(x\)为左端点的长度为\(m\)的子串能够跟\(A\)串匹配的充要条件就是\(C(x) = 0\)。

而\(C(x) = \sum\limits_{i=1}^m (A_{m+1-i} - B_{x+i-1})^2 = \sum\limits_{i=1}^m (A_{m+1-i}^2 + B_{x+i-1}^2) - 2\sum\limits_{i=1}^m A_{m+1-i}B_{x+i-1}\)。可以发现最后的式子是一个卷积的形式,而前面两项都可以前缀和。于是直接FFT算一下最后的卷积就可以\(O(NlogN)\)判断。

现在考虑通配符的情况,通配符可以与任意字符匹配,所以不妨设\(chk(i,j) = (A_i - B_j)^2 A_i B_j\),其中如果某一个字符为通配符就令它的值为\(0\),这样一个通配符匹配的贡献就永远都是\(0\)了。而

\[C(x) = \sum\limits_{i=1}^m chk(m + 1 - i , x+i-1) = \sum\limits_{i=1}^m (A_{m+1-i} - B_{x+i-1})^2 A_{m+1-i} B_{x+i-1} = \sum\limits_{i=1}^m A_{m+1-i}^3 B_{x+i-1} + \sum\limits_{i=1}^m A_{m+1-i}B_{x+i-1}^3 - 2\sum\limits_{i=1}^m A_{m+1-i}^2B_{x+i-1}^2\]

三个都用FFT算一遍就行了

#include<iostream>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
//This code is written by Itst
using namespace std;

#define ld double
const int MAXN = (1 << 20) + 7;
struct comp{
    ld x , y;
    comp(ld _x = 0 , ld _y = 0) : x(_x) , y(_y){}
    comp operator +(comp a){return comp(x + a.x , y + a.y);}
    comp operator -(comp a){return comp(x - a.x , y - a.y);}
    comp operator *(comp a){return comp(x * a.x - y * a.y , x * a.y + y * a.x);}
}A[MAXN] , B[MAXN] , C[MAXN] , D[MAXN];
ld ans[MAXN];
const ld pi = acos(-1);
int M , N , need , dir[MAXN];
char s[MAXN];

inline void init(int len){
    need = 1;
    while(need < len)
        need <<= 1;
    for(int i = 1 ; i < need ; ++i)
        dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
}

void FFT(comp *arr , int type){
    for(int i = 1 ; i < need ; ++i)
        if(i < dir[i])
            swap(arr[i] , arr[dir[i]]);
    for(int i = 1 ; i < need ; i <<= 1){
        comp wn(cos(pi / i) , type * sin(pi / i));
        for(int j = 0 ; j < need ; j += i << 1){
            comp w(1 , 0);
            for(int k = 0 ; k < i ; ++k , w = w * wn){
                comp x = arr[j + k] , y = arr[i + j + k] * w;
                arr[j + k] = x + y; arr[i + j + k] = x - y;
            }
        }
    }
}

void work(){
    for(int i = 0 ; i < need ; ++i)
        C[i] = comp(A[i].x * A[i].x * A[i].x , 0);
    for(int i = 0 ; i < need ; ++i) D[i] = B[i];
    FFT(C , 1); FFT(D , 1);
    for(int i = 0 ; i < need ; ++i)
        C[i] = C[i] * D[i];
    FFT(C , -1);
    for(int i = M + 1 ; i <= N + 1 ; ++i)
        ans[i] += C[i].x / need;

    for(int i = 0 ; i < need ; ++i) C[i] = A[i];
    for(int i = 0 ; i < need ; ++i)
        D[i] = comp(B[i].x * B[i].x * B[i].x , 0);
    FFT(C , 1); FFT(D , 1);
    for(int i = 0 ; i < need ; ++i)
        C[i] = C[i] * D[i];
    FFT(C , -1);
    for(int i = M + 1 ; i <= N + 1 ; ++i)
        ans[i] += C[i].x / need;

    for(int i = 0 ; i < need ; ++i)
        C[i] = comp(A[i].x * A[i].x , 0);
    for(int i = 0 ; i < need ; ++i)
        D[i] = comp(B[i].x * B[i].x , 0);
    FFT(C , 1); FFT(D , 1);
    for(int i = 0 ; i < need ; ++i)
        C[i] = C[i] * D[i];
    FFT(C , -1);
    for(int i = M + 1 ; i <= N + 1 ; ++i)
        ans[i] -= 2 * C[i].x / need;
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    //freopen("out","w",stdout);
#endif
    scanf("%d %d" , &M , &N);
    scanf("%s" , s + 1);
    reverse(s + 1 , s + M + 1);
    for(int i = 1 ; i <= M ; ++i)
        A[i].x = s[i] == '*' ? 0 : s[i] - 'a' + 1;
    scanf("%s" , s + 1);
    for(int i = 1 ; i <= N ; ++i)
        B[i].x = s[i] == '*' ? 0 : s[i] - 'a' + 1;
    init(M + N + 1);
    work();
    int cnt = 0;
    for(int i = M + 1 ; i <= N + 1 ; ++i)
        cnt += ans[i] <= 0.5;
    cout << cnt << endl;
    for(int i = M + 1 ; i <= N + 1 ; ++i)
        if(ans[i] <= 0.5)
            cout << i - M << ' ';
    return 0;
}

Luogu4173 残缺的字符串 FFT的更多相关文章

  1. luoguP4173 残缺的字符串 FFT

    luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]- ...

  2. Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用

    P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...

  3. P4173 残缺的字符串(FFT字符串匹配)

    P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...

  4. BZOJ 4259: 残缺的字符串 [FFT]

    4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...

  5. 【BZOJ4259】残缺的字符串 FFT

    [BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...

  6. 洛谷 P4173 残缺的字符串 (FFT)

    题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...

  7. BZOJ4259:残缺的字符串(FFT)

    Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...

  8. P4173 残缺的字符串 fft

    题意:给你两个字符串,问你第一个在第二个中出现过多少次,并输出位置,匹配时是模糊匹配*可和任意一个字符匹配 题解:fft加速字符串匹配; 假设上面的串是s,s长度为m,下面的串是p,p长度为n,先考虑 ...

  9. 【BZOJ】4259: 残缺的字符串 FFT

    [题意]给定长度为m的匹配串B和长度为n的模板串A,求B在A中出现多少次.字符串仅由小写字母和通配符" * "组成,其中通配符可以充当任意一个字符.n<=3*10^5. [算 ...

随机推荐

  1. git 查看/修改用户名、密码

    用户名和邮箱地址的作用 用户名和邮箱地址是本地git客户端的一个变量,不随git库而改变. 每次commit都会用用户名和邮箱纪录. github的contributions统计就是按邮箱来统计的. ...

  2. Loadrunner 脚本开发-利用Loadrunner生成Web service测试脚本

    脚本开发-利用Loadrunner生成Web service测试脚本 1.选择协议--Web Service,如下图 2.导入服务 入口1:点击Manage Services ->弹出窗中选择“ ...

  3. 我的第一个个人博客网站 -> wizzie.top

    从去年下半年实习结束,到找到第一个属于自己的工作,我就开始着手搭建自己的网站. 使用阿里云学生服务器,域名,备案解析后,开始设计网站结构和页面布局. 因为临近毕业,网站真的是写的页面怎么多怎么写,所以 ...

  4. Spring Boot(二):Web 综合开发

    详见:http://www.ityouknow.com/springboot/2016/02/03/spring-boot-web.html Web 开发 Spring Boot Web 开发非常的简 ...

  5. WebSocket简单尝试

    System.Net.WebSockets.WebSocket 需要.NET 4.5,IIS8以上,Windows Server2008R2自带的IIS不支持,Windows8及Server2012以 ...

  6. 使用LogPhoneUtil工具类在Android手机保存APP运行日志

    最近公司的测试老是提出这样那样的bug,当然也怪自己代码写的烂,所以测试总是会把app搞崩溃,而他们那边崩溃的时候还没有日志打印,自己回来再重现有的时候还真不好复现出来,因此麻烦事就来了.为了方便查看 ...

  7. 遇到电脑IP地址冲突了怎么解决

    由于路由器是自动分配IP地址的,如果多个设备设置的是IP地址自动获取,就会出现IP地址冲突的情况当局域网内有相同IP,并且该机器启动了防火墙,那就没办法自动更新到下一个IP的地址了,所以此时发生了冲突 ...

  8. 6.2Python文件的操作(二)

    目录 目录 前言 (一)文件的定位 (二)文件的读操作 ==1.read()方法== ==2.readline()方法== ==3.readlines()方法== ==4.文件的遍历读法== (三)文 ...

  9. Orcale新增、修改、删除字段

    一.新增字段 alert table user add( userName VARCHAR2(255 CHAR) ) ; 设置字段不为空, 给出默认值 alert table user add( us ...

  10. [ADS]An installation support file could not be installed

    ADS:ARM Developer Suits 错误:An installation support file could not be installed 描述: 之前安装了一个不能用的ADS的版本 ...