Luogu 1437 [HNOI2004]敲砖块 (动态规划)

Description

在一个凹槽中放置了 n 层砖块、最上面的一层有n块砖,从上到下每层依次减少一块砖。每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示。

14 15 4 3 23

33 33 76 2

2 13 11

22 23

31

如果你想敲掉第 i 层的第j 块砖的话,若i=1,你可以直接敲掉它;若i>1,则你必须先敲掉第i-1 层的第j 和第j+1 块砖。你现在可以敲掉最多 m 块砖,求得分最多能有多少。

Input

输入文件的第一行为两个正整数 n 和m;接下来n 行,描述这n层砖块上的分值a[i][j],满足0≤a[i][j]≤100。对于 100%的数据,满足1≤n≤50,1≤m≤n*(n+1)/2;

Output

输出文件仅一行为一个正整数,表示被敲掉砖块的最大价值总和。

Sample Input

4 5

2 2 3 4

8 2 7

2 3

49

Sample Output

19

Http

Luogu:https://www.luogu.org/problem/show?pid=1437

Source

动态规划

解决思路

这是一道非常难想到的动态规划问题。

首先我们把矩阵左对齐,但发现如果我们直接在这个上面对行进行转移,我们发现是不满足转移的有序性的,因为第i行第j列是否可以敲掉取决于上面一个倒三角是否被敲掉,比如说这个图

 1  2  3  4  5
6 7 8 9
10 11 12
13 14
15

如果我们要敲掉7,则1,2都要敲掉。如果我们要敲掉12,则1,2,3,7,8都要敲掉。这给转移带来了麻烦。

如何解决呢?我们发现如果第i行第j列被敲掉了,那么要求对于\(\forall k \in [1,i-1]\),[k][j]一定被打掉了。

于是我们就想到话说这怎么想到的?把矩阵翻折过来。上面的矩阵就变成了这个样子

1
2 6
3 7 10
4 8 11 13
5 9 12 14 15

简单点来说,就是把矩阵沿主对角线翻折,再向下对齐

这个翻转用程序表示就是:

for (int j=1;j<=n;j++)
for(int i=j;i<=n;i++)
Mat_new[i][j]=read();//read就是按照原矩阵的顺序从上至下从左至右读入

那么我们就可以知道,如果要选择[i][j],那么[i][1~(j-1)]是一定要选的,并且我们还发现,原来的选一个数需要选择的上三角变成了更好处理的下三角。举个例子,比如说12

在原来的图中

 1   2   [3] [4] [5]
6 7 [8] [9]
10 11 [12]
13 14
15

把图翻折后

 1
2 6
[3] 7 10
[4] [8] 11 13
[5] [9] [12] 14 15

所以,我们设F[i][j][k]表示在新图中的第i行取前j个总共取了k个的最大的,那么我们只要枚举上一行是由那个转移过来的。

可以注意到,因为我们当前是在第j列,那么我们在上一行的枚举就至少得从j-1列开始。比如上面这个12的例子,那么就至少得从数字8(第2列)开始枚举,枚举到数字13(第4列)

所以我们就可以的得到动态转移方程(Arr就是我们翻转后的矩阵)

\[F[i][j][k]=max(F[i][j][k],F[i-1][p][k-j]+\sum_{l=1}^{l<=j}Arr[i][j])\{p \in [1,j-1]\}
\]

我们发现这个算法还有改进的余地,就是利用前缀和来优化\(\sum_{l=1}^{l<=j}Arr[i][j]\)的求解。

令\(Sum[i][j]=\sum_{k=1}^{k<=i}Arr[i][k]\),那么有

\[Sum[i][j]=Sum[i][j-1]+Arr[i][j]
\]

所以最终的转移方程就是

\[F[i][j][k]=max(F[i][j][k],F[i-1][p][k-j]+Sum[i][j])
\]

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; #define ll long long
#define mem(Arr,x) memset(Arr,x,sizeof(Arr)) const int maxN=60;
const int maxM=4000;
const int inf=2147483647; int n,m;
int Arr[maxN][maxN];
int Sum[maxN][maxN];
int F[maxN][maxN][maxM]; int read();
void outp(); int main()
{
n=read();
m=read();
for (int j=1;j<=n;j++)//输入,同时转置矩阵
for(int i=j;i<=n;i++)
Arr[i][j]=read();
for (int i=1;i<=n;i++)//计算前缀和
for (int j=1;j<=i;j++)
Sum[i][j]=Sum[i][j-1]+Arr[i][j];
mem(F,-1);//置为-1,标记为不行
for (int i=1;i<=n;i++)//动态转移初始值
{
F[i][0][0]=0;
F[i][1][1]=Arr[1][i];
}
int Ans=0;
for (int i=1;i<=n;i++)
for (int j=0;j<=i;j++)
for (int k=0;k<=m;k++)
{
if (j<=k)//只用j<k的时候才能推
for (int p=max(j-1,0);p<=i-1;p++)//注意这里的取max,因为j为0的时候j-1是负数
if (F[i-1][p][k-j]!=-1)
F[i][j][k]=max(F[i][j][k],F[i-1][p][k-j]+Sum[i][j]);
Ans=max(Ans,F[i][j][k]);//取最大值
}
printf("%d\n",Ans);
fclose(stdin);
fclose(stdout);
return 0;
} int read()
{
int x=0;
int k=1;
char ch=getchar();
while (((ch>'9')||(ch<'0'))&&(ch!='-'))
ch=getchar();
if (ch=='-')
{
k=-1;
ch=getchar();
}
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x*k;
}

Luogu 1437 [HNOI2004]敲砖块 (动态规划)的更多相关文章

  1. luogu P1437 [HNOI2004]敲砖块

    三角形向右对齐后 你想打掉一个砖块,那么你必须打掉右上方的三角形,前缀和维护 若是第i列若是k个,那么它右边的那一列至少选了k-1个 f[i][j][k] 表示从后向前选到第 i 列第j个一共打了k次 ...

  2. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  3. 【题解】HNOI2004敲砖块

    题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...

  4. [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  5. P1437 [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  6. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  7. yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块

    题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...

  8. [洛谷1437&Codevs1257]敲砖块<恶心的dp>

    题目链接:https://www.luogu.org/problem/show?pid=1437#sub http://codevs.cn/problem/1257/ 不得不说,这个题非常的恶心,在初 ...

  9. luogu P1437 [HNOI2004]尻♂砖块

    传送门 想明白了其实不难 强行瞎扯 这题的限制比较烦,导致了一行行转移几乎不能做(吧) 那么一列列转移呢? 设\(f_{i,j,k}\)表示前\(i\)列,取\(j\)个,其中第\(i\)列取从上往下 ...

随机推荐

  1. 止不住的裁员潮:看京东前员工吐槽——绩效打C还希望我好好干

    昨天,京东裁员消息被证实,京东将在2019年末位淘汰10%的副总裁级别以上的高管. 在互联网职场交流社区,一名自称京东的员工如此吐槽:办完离职了心情大好,自由放飞,明天入职新公司,你给新员工打C,还希 ...

  2. default construction

    4种情况下编译器会构造出nontrivial(有用)的构造函数 带有default construction的member class object 我们有两个class: class Foo { p ...

  3. 记一次艰难的jquery easy-ui ajax post 体验

    分享的经验和教训是: 1.jquery easy-ui ajax post 复杂的Json给后端解析,后端如果接收和解析 2.asp.net webform jquery easy-ui datagr ...

  4. OpenVPN简单部署笔记

    打算在IDC机房部署VPN环境,Openvpn也是一个不错的选择:开源,好用,而且免费. OpenVPN简单介绍OpenVPN是一个用于创建虚拟专用网络(Virtual Private Network ...

  5. Linux内核及分析 第四周 扒开系统调用的三层皮(上)

    实验过程 选择20号系统调用getpid(取得进程识别码) 在网上查询getpid函数的C语言代码以及其嵌入式汇编语句 C语言代码: #include <stdio.h> #include ...

  6. 四则运算-ppt演示

     

  7. PAT 1022 D进制的A+B

    https://pintia.cn/problem-sets/994805260223102976/problems/994805299301433344 输入两个非负10进制整数A和B(<=2 ...

  8. Node 开启

    cmd    //进入命令行 D:     //指定磁盘 cd   文件路径   //指定路径 node 文件名.js       //执行文件 增补: Node执行js文件自动嵌套 (functio ...

  9. hive web界面管理

    老版本使用 访问<Hive Server Address>:9999/hwi 1.首先下载对应版本的src文件,本机使用apache-hive-1.2.2-src.tar.gz 2.解压缩 ...

  10. YII2十三大特性2

    第十三 场景(scenario)的使用 例如:有三个场景,分别为创建,更新,确认回款 首先,定义所有的场景,及规则,如下所示: <?php namespace core\models; use ...