题意:多次求从点x出发经过边权不超过k的边能走到的点中第k大的权值。

解:离线排序 + 并查集 + 线段树合并。

题面有锅...是第k大的权值不是第k大的山。

 #include <cstdio>
#include <algorithm> const int N = , M = , V = ; struct Edge {
int x, y, h;
inline bool operator <(const Edge &w) const {
return h < w.h;
}
}edge[M]; struct Ask {
int x, h, k, id;
inline bool operator <(const Ask &w) const {
return h < w.h;
}
}ask[M]; int fa[N], rt[N], ls[V], rs[V], sum[V], siz[N], tot, ans[M], X[N], val[N]; int find(int x) {
if(x == fa[x]) {
return x;
}
return fa[x] = find(fa[x]);
} int merge(int x, int y) {
if(!x || !y) {
return x | y;
}
int o = ++tot;
sum[o] = sum[x] + sum[y];
ls[o] = merge(ls[x], ls[y]);
rs[o] = merge(rs[x], rs[y]);
return o;
} int query(int k, int l, int r, int o) {
if(l == r) {
return r;
}
int mid = (l + r) >> ;
if(k > sum[rs[o]]) {
return query(k - sum[rs[o]], l, mid, ls[o]);
}
else {
return query(k, mid + , r, rs[o]);
}
} inline void Xmerge(int x, int y) {
x = find(x);
y = find(y);
if(x == y) {
return;
}
fa[y] = x;
siz[x] += siz[y];
// printf("siz %d += %d = %d \n", x, siz[y], siz[x]);
rt[x] = merge(rt[x], rt[y]);
return;
} void insert(int p, int l, int r, int &o) {
if(!o) {
o = ++tot;
}
sum[o] = ;
if(l == r) {
return;
}
int mid = (l + r) >> ;
if(p <= mid) {
insert(p, l, mid, ls[o]);
}
else {
insert(p, mid + , r, rs[o]);
}
return;
} int main() {
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for(int i = ; i <= n; i++) {
scanf("%d", &val[i]);
X[i] = val[i];
}
std::sort(X + , X + n + );
int xx = std::unique(X + , X + n + ) - X - ;
for(int i = ; i <= n; i++) {
val[i] = std::lower_bound(X + , X + xx + , val[i]) - X;
insert(val[i], , xx, rt[i]);
fa[i] = i; siz[i] = ;
}
for(int i = ; i <= m; i++) {
scanf("%d%d%d", &edge[i].x, &edge[i].y, &edge[i].h);
}
for(int i = ; i <= q; i++) {
scanf("%d%d%d", &ask[i].x, &ask[i].h, &ask[i].k);
ask[i].id = i;
}
std::sort(edge + , edge + m + );
std::sort(ask + , ask + q + ); int p = ;
for(int i = ; i <= q; i++) {
while(p <= m && edge[p].h <= ask[i].h) {
Xmerge(edge[p].x, edge[p].y);
p++;
// printf("Xmerge %d %d \n", edge[p].x, edge[p].y);
}
int x = find(ask[i].x);
// printf("x = %d \n", x);
// printf("%d < %d \n", siz[x], ask[i].k);
if(siz[x] < ask[i].k) ans[ask[i].id] = -;
else ans[ask[i].id] = X[query(ask[i].k, , xx, rt[x])];
}
for(int i = ; i <= q; i++) {
printf("%d\n", ans[i]);
}
return ;
}

AC代码

bzoj3545 Peaks的更多相关文章

  1. [bzoj2733]永无乡&&[bzoj3545]Peaks

    并不敢说完全会了线段树合并,只是至少知道原理写法了...还是太菜了,每天被大佬吊锤qwq 我看到的几道线段树合并都是权值线段树的合并.这个算法适用范围应该只是01线段树的. 这两道算入门题了吧... ...

  2. BZOJ3545 Peaks 离线处理+线段树合并

    题意: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经 ...

  3. bzoj3545 Peaks 线段树合并

    离线乱搞... 也就是一个线段树合并没什么 #include<algorithm> #include<iostream> #include<cstring> #in ...

  4. [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树

    这次我们来搞一个很新奇的知识点:克鲁斯卡尔重构树.它也是一种图,是克鲁斯卡尔算法求最小生成树的升级版首先看下面一个问题:BZOJ3545 Peaks. 在Bytemountains有N座山峰,每座山峰 ...

  5. [学习笔记]kruskal重构树 && 并查集重构树

    Kruskal 重构树 [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树 kruskal是一个性质优秀的算法 加入的边是越来越劣的 科学家们借这个特点尝试搞一点事 ...

  6. bzoj3545: [ONTAK2010]Peaks 重构树 主席树

    题目链接 bzoj3545: [ONTAK2010]Peaks 题解 套路重构树上主席树 代码 #include<cstdio> #include<algorithm> #de ...

  7. 【BZOJ3545】 [ONTAK2010]Peaks

    BZOJ3545 [ONTAK2010]Peaks Solution 既然会加强版,直接把强制在线的操作去掉就好了. 代码实现 #include<stdio.h> #include< ...

  8. 【bzoj3545】[ONTAK2010]Peaks 线段树合并

    [bzoj3545][ONTAK2010]Peaks 2014年8月26日3,1512 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路 ...

  9. 「BZOJ3545」「ONTAK2010」Peaks

    「BZOJ3545」「ONTAK2010」Peaks 题目传送门 题目大意: 给定一个 \(n\) 个点,\(m\) 条边的带点权边权无向图,有 \(q\) 次询问,每次询问从 \(v\) 点出发,经 ...

随机推荐

  1. PHP从入门到精通(六)

    PHP中的错误处理 1.PHP的错误级别:见表格.2.调整PHP错误报告级别:PHP中,调整错误报告级别的方式有两种: ①修改PHP.ini文件的配置项.a.会导致在当前服务器环境下所有PHP文件都受 ...

  2. (第十二周)final预发布视频

    项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 Final阶段视频发布 平台:优酷 链接:http://v.youku.com/v_show/id_XMTg0 ...

  3. Code Review —— by12061154Joy

    对结对队友刘丽萍的代码进行了复审: 优点: 1,代码逻辑正确,基本能够完全需求 2,用了不少C#自带的函数,第一次写C#,相信是查阅了不少资料,虽然还有很多地方值得优化,不过第一次能做到这样已经很不错 ...

  4. 访谈:BugPhobia’s Brief Communication

    0x01 :采访的学长简介 If you weeped for the missing sunset, you would miss all the shining stars 梁野,北京航空航天大学 ...

  5. 《Linux内核设计与实现》第五章学习笔记

    <Linux内核设计与实现>第五章学习笔记 姓名:王玮怡  学号:20135116 一.与内核通信     在Linux中,系统调用是用户空间访问内核的唯一手段:除异常和陷入外,它们是内核 ...

  6. Linux内核总结博客 20135332武西垚

    http://www.cnblogs.com/wuxiyao/p/5220677.htmlhttp://www.cnblogs.com/wuxiyao/p/5247571.htmlhttp://www ...

  7. jupyter notebook远程配置

    服务器端配置 在服务器生成jupyter配置文件 $jupyter notebook --generate-config 生成之后会得到配置文件的路径 启动jupyter,设置密码 In [1]: f ...

  8. 七牛云域名DV SSL证书申请流程以及CDN融合加速配置

    从2017年起,苹果ios以及微信小程序都陆续要求请求连接request地址是使用HTTPS协议的.所以在项目开发阶段就要考虑解决https的问题,同时这也是为项目实际安全所考虑.最近我也是在折腾项目 ...

  9. 智能制造(MES)四大阶段

    智能制造的发展会经历标准化.自动化.信息化.智能化四个阶段标准化,对于生产流程.业务流程.生产制造多方面的标准化.质量检测标准化.企业管理.供应链等.标准化是组织现代化生产的重要组成部分,对于生产专业 ...

  10. WPF将数据库和GridView绑定并更改GridView模板

    首先来看一下如何使用GridView,在前台的话代码如下:这里仅仅举出一个例子,GridView是作为子项嵌套在ListView中的,这里的数据源是通过绑定的方式来绑定到GridView中的. < ...