LICS:最长公共上升子序列;

一般令f[i][j]表示a串前i位,b串以j结尾的LICS长度。于是,答案为:max(1~m)(f[n][i]);

朴素做法:O(n^3) 相等时,从1~j-1枚举最大值。

for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{if(a[i]!=b[j]) f[i][j]=f[i-][j];
else if(a[i]==b[j])
for(int k=;k<j;k++)
if(b[k]<b[j]) f[i][j]=f[i-][k];
}

算法时间复杂度改进思路主要从优化第三层(k)复杂度入手。

升级做法: O(n^2logn) 利用树状数组记录f[i-1][1~j-1]最大值; 数组下表记录的是b串数值。 (第一个j循环预处理,并且更新上一次的成果)需要:树状数组和离散化。

int mx[]
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{mx[j]=query(b[j]-)//0~b[j]-1 这些数中的f最大值
modify(b[j],f[i-][j])//将上一轮求出的f尝试更新
}
for(int j=;j<=m;j++)
if(a[i]==b[j]) f[i][j]=mx[j]+;
else f[i][j]=f[i-][j];
}

其实这样很麻烦。 复杂度中等,还需要离散化,求具体子序列还要还原。

终极做法:O(n^2) 考虑到,每次进行j循环时,i不动,a[i]的值暂时不变。所以只需边求边记录最大值即可。 直接省掉k层循环。

for(int i=;i<=n;i++)
{
int mx=f[i-][];
for(int j=;j<=m;j++)
if(a[i]!=a[j])
f[i][j]=f[i-][j]
else
f[i][j]=mx+;
if(b[j]<a[i])//j即将变成j+1,尝试更新mx(只有b[j]<a[i]才可以保证上升)
mx=max(mx,f[i-1][j])
}

poj 2127 至于要求具体子序列时,需要记录使之更新的前驱,即path[i][j]=某个位置bj; 因为是“以j结尾”,所以记录bj。输出时输出b[bj];

详见代码: ai,aj记录使答案成为ans的第一个位置。 故可以直接输出b[aj];

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
const int N=;
int f[N][N],path[N][N];
int mj,mx,sum,ai,aj;
int ans[N];
int n,m;
int a[N],b[N];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d",&b[i]);
for(int i=;i<=n;i++)
{
mx=;
for(int j=;j<=m;j++)
{
f[i][j]=f[i-][j];
path[i][j]=-;
if(b[j]<a[i]&&f[i-][j]>mx)
{
mx=f[i-][j];
mj=j;
}
else if(a[i]==b[j])
{
f[i][j]=mx+;
path[i][j]=mj;
}
if(sum<f[i][j])
{
sum=f[i][j];
ai=i;
aj=j;
}
}
}
printf("%d\n",sum);
int tmp=sum;
while(tmp)
{
if(path[ai][aj]>-)
{
ans[tmp--]=b[aj];
aj=path[ai][aj];
}
ai--;
}
for(int i=;i<=sum;i++)
printf("%d ",ans[i]);
return ;
}

纯手打。 参考:https://www.cnblogs.com/dream-wind/archive/2012/08/25/2655641.html

LICS O(n*m)+前驱路径的更多相关文章

  1. LeetCode:Word Ladder I II

    其他LeetCode题目欢迎访问:LeetCode结题报告索引 LeetCode:Word Ladder Given two words (start and end), and a dictiona ...

  2. LeetCode:Word Break II(DP)

    题目地址:请戳我 这一题在leetcode前面一道题word break 的基础上用数组保存前驱路径,然后在前驱路径上用DFS可以构造所有解.但是要注意的是动态规划中要去掉前一道题的一些约束条件(具体 ...

  3. [LeetCode] Word Ladder II

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  4. leecode 每日解题思路 64 Minimum Path Sum

    题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...

  5. Cocos2d-x 地图步行实现1:图论Dijkstra算法

    下一节<Cocos2d-x 地图行走的实现2:SPFA算法>: http://blog.csdn.net/stevenkylelee/article/details/38440663 本文 ...

  6. 【Word Ladder II】cpp

    题目: Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) ...

  7. 2018.11.3 PION模拟赛

    期望:100    实际:100 #include<cstdio> #include<cstring> #include<iostream> #include< ...

  8. POJ2127 LICS模板

    题目:http://poj.org/problem?id=2127 十分费劲地终于记录好了路径……用一个前驱. 这是 n^2 的LICS方法.其实就是 n ^ 2 log n 把“找之前的d [ j ...

  9. HDU 4862 Jump(最小K路径覆盖)

    输入一个n×m网格图,每个结点的值为0-9,可以从任意点出发不超过k次,走完每个点且仅访问每个结点一次,问最终的能量最大值.不可全部走完的情况输出-1. 初始能量为0. 而结点(x,y)可以跳跃到结点 ...

随机推荐

  1. 【调试技巧】 Fiddler高级用法之url映射请求

    问题场景: 已发布线上APP出现接口错误,如何测试线上APP访问本地请求? 已发布线上H5页面,静态资源或js调试,如何映射本地js? 一般解决方案: 猜测(一般明显问题). 找到原发布包,修改请求资 ...

  2. 当给DataGrid的Itemssoure属性赋值引起TabControl_SelectionChanged事件

    在TabControl的TabItem下布局了DataGrid控件时,当给dg.ItemsSource 赋值时会触发父控件的TabControl_SelectionChanged事件; 类似问题原因可 ...

  3. 针对Nginx日志的相关运维操作记录

    在分析服务器运行情况和业务数据时,nginx日志是非常可靠的数据来源,而掌握常用的nginx日志分析命令的应用技巧则有着事半功倍的作用,可以快速进行定位和统计. 1)Nginx日志的标准格式(可参考: ...

  4. 个人博客作业-Week1

    1.五个问题 1) 团队编程中会不会因为人们意见的分歧而耽误时间,最终导致效率降低? 2)软件团队中测试的角色应该独立出来吗 3)对于团队编程,如果没有时间测试他人的新功能,因此就不添加该新功能,那会 ...

  5. js 基础-&& || 逻辑与和逻辑或

    今天百度发现一个简化长if   else if 语句的方法,看起来及其强大,感觉这样虽然对系统性能提升没有帮助但是代码更简练了,分析了一番,下面先说说自己学到的理论. 首先要弄清楚js 中对于 变量, ...

  6. git学习心得

    https://github.com/zhangxinn/test/tree/master 自己虽然在课堂上有认真的听老师讲解如何使用github,包括怎样在线学习,怎样在github上建立自己的仓库 ...

  7. 正则表达式(java)

    概念: 正则表达式,又称规则表达式.(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念. 正则表通常被用来检索.替换那些符合某个模式( ...

  8. squid反向代理

    反向代理的作用是就爱那个网站中的静态自原本地化.也就是将一部分本应该有原是服务器处理的请求交给 Squid 缓存服务处理 编辑 Squid  服务程序的配置文件*(正向代理与反向代理不能同时使用,) ...

  9. org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'stu' defined in class path resource [applicationContext.xml]: Instantiation of bean failed; nested exception is

    org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'stu' defined ...

  10. mysql复杂查询

    所谓复杂查询,指涉及多个表.具有嵌套等复杂结构的查询.这里简要介绍典型的几种复杂查询格式. 一.连接查询 连接是区别关系与非关系系统的最重要的标志.通过连接运算符可以实现多个表查询.连接查询主要包括内 ...