本文出自:https://wenku.baidu.com/view/e3bdfb7601f69e31433294c4.html

STM32定时器时间的计算方法

STM32中的定时器有很多用法:
(一)系统时钟(SysTick)
设置非常简单,以下是产生1ms中断的设置,和产生10ms延时的函数:
void RCC_Configuration(void)
{
RCC_ClocksTypeDef RCC_ClockFreq;
SystemInit();//源自system_stm32f10x.c文件,只需要调用此函数,则可完成RCC的配置.
RCC_GetClocksFreq(&RCC_ClockFreq);
//SYSTICK分频--1ms的系统时钟中断
if (SysTick_Config(SystemFrequency / 1000))
{   
    while (1);   // Capture error
}
}
void SysTick_Handler(void)//在中断处理函数中的程序
{
while(tim)
{
tim--;
}
}
//调用程序:
Delay_Ms(10);
当然,前提是要设置好,变量tim要设置成volatile类型的。
(二)第二种涉及到定时器计数时间(TIMx)
/*TIM3时钟配置*/
TIM_TimeBaseStructure.TIM_Prescaler = 2;       //预分频(时钟分频)72M/(2+1)=24M
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;   //向上计数
TIM_TimeBaseStructure.TIM_Period = 65535;        //装载值18k/144=125hz
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0;
TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);
定时时间计算:
TIM_TimeBaseStructure.TIM_Prescaler = 2;
//分频2      72M/(2+1)/2=24MHz
TIM_TimeBaseStructure.TIM_Period = 65535; //计数值65535
((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+2)/72M)*(1+65535)=0.00273秒=366.2Hz */
注意两点(来自大虾网,未经检验)
(1)TIMx(1-8),在库设置默认的情况下,都是72M的时钟;
(2)TIM_TimeBaseStructure.TIM_RepetitionCounter=0;
是重复计数,就是重复溢出多少次才给你来一个溢出中断,
它对应的寄存器叫TIM1 RCR.
如果这个值不配置,上电的时候寄存器值可是随机的,本来1秒中断一次,可能变成N秒中断一次,让你超级头大!
 
假设系统时钟是72Mhz,TIM1是由PCLK2(72MHz)得到,TIM2-7是由PCLK1得到
关键是设定时钟预分频数,自动重装载寄存器周期的值
/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。因此,每次进入中
断服务程序间隔时间为
((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒*/
 定时器的基本设置
   1、   TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数  例如:时
钟频率=72/(时钟预分频+1)
   2、TIM_TimeBaseStructure.TIM_Period = 9999; //自动重装载寄存器周期的值(定时
时间)    累计0xFFFF个频率后产生个更新或者中断(也是说定时时间到)
   3、  TIM_TimeBaseStructure.TIM_CounterMode =  TIM1_CounterMode_Up; //定时器
模式 向上计数
    
     4、TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值
     5、TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2
     6、TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);  //打开中断  溢出中断  
     7、TIM_Cmd(TIM2, ENABLE);//打开定时器
或者:
TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999      72M/
(35999+1)/2=1Hz  1秒中断溢出一次
 TIM_TimeBaseStructure.TIM_Period = 2000; //计数值2000
((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+35999)/72M)*(1+2000)=1秒*/
 
STM32通用定时器的基本定时器功能实现灯闪烁
/*MAIN.C*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"
#include "misc.h"
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void NVIC_Configuration(void);
void GPIO_Configuration(void);
void TIM3_Configuration(void);
/* Private functions ---------------------------------------------------------*/

int main(void)
{
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
TIM3_Configuration();
TIM_ClearFlag(TIM3, TIM_FLAG_Update);/*清除更新标志位*/
TIM_ARRPreloadConfig(TIM3, DISABLE);/*预装载寄存器的内容被立即传送到影子寄存器*/
TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);  
TIM_Cmd(TIM3, ENABLE);

while (1) {
   ;
}
}

void TIM3_Configuration(void)
{
/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。
因此,每次进入中断服务程序间隔时间为((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒*/

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Period = 9999;
TIM_TimeBaseStructure.TIM_Prescaler = 7199;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);/*此函数的语句"TIMx->EGR = TIM_PSCReloadMode_Immediate;"以软件方式产生更新事件(注:当发生一个更新事件时,所有的寄存器都被更新,硬件同时(依据URS位)设置更新标志位(TIMx_SR寄存器中的UIF位)。)。*/
}

void RCC_Configuration(void)
{
SystemInit();
  
/* TIM3 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

/* GPIOC clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);
}

void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;

/* Enable the TIM3 gloabal Interrupt*/
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}

void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/*注:不用为实现通用定时器的基本定时器功能配置Pin*/
}
/*stm32f10x_it.c*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_it.h"
void TIM3_IRQHandler(void)
{
if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) {
   /* Clear TIM3 update interrupt */
   TIM_ClearITPendingBit(TIM3, TIM_IT_Update);
   GPIO_WriteBit(GPIOC, GPIO_Pin_7, (BitAction)(1 - GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_7)));

STM32定时器时间的计算方法的更多相关文章

  1. STM32 定时器用于外部脉冲计数(转)

    源:STM32 定时器用于外部脉冲计数 STM32 定时器(一)——定时器时间的计算 STM32的定时器是灰常NB的,也是灰常让人头晕的(当然是对于白菜来说的). STM32中的定时器有很多用法: ( ...

  2. STM32定时器的预装载寄存器与影子寄存器之间的关系【转】

    首先转载:   STM32定时器的预装载寄存器与影子寄存器之间的关系 本文的说明依据STM32参考手册(RM0008)第10版:英文:http://www.st.com/stonline/produc ...

  3. 用STM32定时器测量信号频率——测频法和测周法[原创cnblogs.com/helesheng]

    工业测试与控制系统中,经常需要对未知信号的频率进行测试.对于10MHz以下的信号,用单片机(MCU)定时器完成这项任务显然是最常见和最佳的选择.目前性价比最高的单片机STM32拥有功能强大且数量众多的 ...

  4. STM32定时器学习---基本定时器

    STM32F1系列的产品,除了互联网产品外,工作8个,3种定时器,其中一种就是基本定时器.那么STM32单片机的基本定时器如何操作以及编程呢? 下面我们就来详细的了解一下 STM32F1系列的产品,除 ...

  5. stm32定时器中断类型分析

    一直在用的stm32定时器的中断都是TIM_IT_Update更新中断,也没问为什么,直到碰到有人使用TIM_IT_CC1中断,才想到这定时器的中断类型究竟有什么区别,都怪当时学习stm32的时候不够 ...

  6. STM32 定时器用于外部脉冲计数

    STM32 定时器用于外部脉冲计数 第一步,设置GPIO GPIO_InitTypeDef GPIO_InitStructure; /* PA0,PA12-> 左右脉冲输入 */GPIO_Ini ...

  7. stm32定时器输出移相PWM(非主从模式)

    背景:由于项目需要,需要stm32输出任意相角度的PWM 前提知识: 1.stm32定时器的Tim,一般有多个OC.具体差别根据型号来定. 2.定时器的使能,理论上是多个通道同时使能 3.TIM_OC ...

  8. Mysql 查看定时器 打开定时器 设置定时器时间

    1.查看是否开启evevt与开启evevt. 1.1.MySQL evevt功能默认是关闭的,可以使用下面的语句来看evevt的状态,如果是OFF或者0,表示是关闭的. show VARIABLES ...

  9. 玩转X-CTR100 l STM32F4 l 定时器时间测量

    我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ] 本文介绍X-CTR100控制器 使用处理器内部硬件定 ...

随机推荐

  1. linux搭建node环境

    这篇完全够了! 地址:https://www.cnblogs.com/lovefc/p/8847343.html 附上一张图:

  2. 数据结构与算法之PHP排序算法(插入排序)

    一.基本思想 插入排序算法是每一步将一个待排序的数据插入到前面已经排好序的有序序列中,直到所有元素插入完毕为止.   二.算法过程 1)将第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未 ...

  3. caffe安装

    安装caffe的时候一定要保持一个乐观的心态,不然容易放弃人生.由于自己是装完才写的,所以并没有截图. 平台:Window7 硬件:NVIDIV quaro M4000 软件:Visual Studi ...

  4. nio 序列化

    1.序列化 public class SerializeUtils<T extends Serializable> { public byte[] serialize(T t) { byt ...

  5. Linux .vimrc 设置项

    Linux 下,.vimrc 有两个.一个是全局使用的(/etc/vimrc),另一个是个人使用的(~/.vimrc). 大部分的情况下,我们只需要设置自己目录下的.vimrc 即可. # vim ~ ...

  6. Vue(二) 计算属性

    模板内的表达式常用于简单的运算,当过长或逻辑复杂时,难以维护,计算属性就是解决该问题的 什么是计算属性 表达式如果过长,或逻辑更为复杂,就会变得臃肿甚至难以维护,比如: <div> {{ ...

  7. angular5理解生命周期

    先来看下文档: 按照顺序有八个: 1.ngOnChanges()=>简单理解为当数据绑定输入属性的值发生变化时调用: 2.ngOnInit() => 在调用完构造函数.初始化完所有输入属性 ...

  8. 自动化测试-12.selenium的弹出框处理

    前言 不是所有的弹出框都叫alert,在使用alert方法前,先要识别出到底是不是alert.先认清楚alert长什么样子,下次碰到了,就可以用对应方法解决. alert\confirm\prompt ...

  9. eval函数解析json数据时加上圆括号的原因

    var temp = eval("(" + data + ")"); //解析json数据 json是以”{}”的方式来开始以及结束的,在JS中,“{}”会被当 ...

  10. IC卡触点释放时序

    IC卡触点释放时序过程如下: 要点: 终端必须通过把RST置为低电平状态来启动释放时序: 在置RST为低电平之后VCC断电之前,终端必须将CLK和IO设定为低电平状态: 在置RST.CLK和IO为低电 ...