BZOJ1115[POI2009]石子游戏——阶梯Nim游戏
题目描述
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数。两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏。问先手是否必胜。
输入
第一行u表示数据组数。对于每组数据,第一行N表示石子堆数,第二行N个数ai表示第i堆石子的个数(a1<=a2<=……<=an)。 1<=u<=10 1<=n<=1000 0<=ai<=10000
输出
u行,若先手必胜输出TAK,否则输出NIE。
样例输入
2
2 2
3
1 2 4
样例输出
TAK
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,T;
int a[10010];
int c[10010];
int ans;
int main()
{
scanf("%d",&T);
while(T--)
{
ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
c[i]=a[i]-a[i-1];
}
for(int i=n;i>=1;i-=2)
{
ans^=c[i];
}
if(ans==0)
{
printf("NIE\n");
}
else
{
printf("TAK\n");
}
}
}
BZOJ1115[POI2009]石子游戏——阶梯Nim游戏的更多相关文章
- 阶梯nim游戏
阶梯nim游戏有n个阶梯,0-n-1,每个阶梯上有一堆石子,编号为i的阶梯上的石子只能移动到i-1上去,每次至少移动一个,最后所有的石子都移动到0号阶梯上了.结论:奇数阶梯上的石子异或起来,要是0,就 ...
- NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结
NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子 ...
- [bzoj1115][POI2009]石子游戏Kam_博弈论_阶梯博弈
石子游戏 Kam bzoj-1115 POI-2009 题目大意:给定n堆石子,两个人轮流取石子.每堆石子的个数都不少于前一堆石子.每次取后也必须维持这个性质.问谁有必胜策略. 注释:$1\le ca ...
- BZOJ1115 [POI2009]石子游戏Kam 【博弈论——阶梯游戏】
题目 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. ...
- BZOJ1115:[POI2009]石子游戏Kam(博弈论)
挺水的 听说是阶梯nim和,就去看了一下,然后就会了= = 观察题目,发现拿第i堆棋子k个造成的影响就是第i+1堆棋子能多拿k个 可以把模型转化为,有n堆石子,每次从某一堆拿一个石子,放在下一堆中,不 ...
- BZOJ 1874 取石子游戏 (NIM游戏)
题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...
- 石子游戏(nim游戏+按位考虑)
题意 给\(n\)堆石子,每次最多可以从一堆中取\(x\)个,问你\(x = 1 ... n\)时的答案. 解法 经典\(nim\)游戏,找规律知\(sg[i] = i \ mod \ (x+1)\) ...
- BZOJ 1022 / P4279 Luogu [SHOI2008]小约翰的游戏 (反Nim游戏) (Anti-SG)
题意 反Nim游戏,两人轮流选一堆石子拿,拿到最后一个的输.问先手是否必胜. 分析 怎么说,分类讨论? 情形1:首先考虑最简单的情况,所有石子数都为1.那么奇数堆石子为必败,偶数为必胜 情形2:然后考 ...
- [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...
随机推荐
- 【Codeforces 17E】Palisection
Codeforces 17 E 题意:给一个串,求其中回文子串交叉的对数. 思路1:用哈希解决.首先求出每个点左右最长的回文串(要分奇数长度和偶数长度),然后记录经过每个点的回文串的个数,以及它们是在 ...
- Android 绘制一个Loading动画__向图片中缓慢填充颜色,从而形成动画效果
需求:制作一个加载动画,向一个不规则图片图形中从从下到上依次填充颜色,形成动画效果. 效果如下: 代码如下: LoadingAnimatorView.java package cn.yw.li ...
- IDEA Junit4配置
一.安装JUnitGenerator V2.0. 1.通过网络安装.如下 2.手动下载插件安装.插件下载:https://plugins.jetbrains.com/idea/plugin/3064- ...
- HDMI接口的PCB设计
1.定义 HDMI的全称是“HighDefinitionMultimedia”,即:高清多媒体接口. HDMI在引脚上和DVI兼容,只是采用了不同的封装.与DVI相比.HDMI可以传输数字音频信号,并 ...
- Java 面试题 == 和 equals 的区别
int和Integer的区别 1.Integer是int的包装类,int则是java的一种基本数据类型 2.Integer变量必须实例化后才能使用,而int变量不需要 3.Integer实际是对象的引 ...
- Jquery 图片延迟加载技术
参考网址:http://code.ciaoca.com/jquery/lazyload/ 延迟加载能大大增加你网站的加载速度! 需要引入以下文件<Jq文件也是少不了的>: <scri ...
- SKINNY加密算法详解(无代码,仅加密)
原作者论文请参考<The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS> 地址为:https://li ...
- Docker容器学习梳理 - 基础环境安装
以下是centos系统安装docker的操作记录 1)第一种方法:采用系统自带的docker安装,但是这一般都不是最新版的docker安装epel源[root@docker-server ~]# wg ...
- Spring RPC 入门学习(3)-获取Student对象
Spring RPC传递对象. 1. 新建RPC接口:StudentInterface.java package com.cvicse.ump.rpc.interfaceDefine; import ...
- Quartz学习(转)
Quartz, 是一个企业级调度工作的框架,帮助Java应用程序到调度工作/任务在指定的日期和时间运行. 一.在Java工程中使用Quartz 1.导入jar包 com.springsource.or ...