BZOJ1115[POI2009]石子游戏——阶梯Nim游戏
题目描述
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数。两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏。问先手是否必胜。
输入
第一行u表示数据组数。对于每组数据,第一行N表示石子堆数,第二行N个数ai表示第i堆石子的个数(a1<=a2<=……<=an)。 1<=u<=10 1<=n<=1000 0<=ai<=10000
输出
u行,若先手必胜输出TAK,否则输出NIE。
样例输入
2
2 2
3
1 2 4
样例输出
TAK
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,T;
int a[10010];
int c[10010];
int ans;
int main()
{
scanf("%d",&T);
while(T--)
{
ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
c[i]=a[i]-a[i-1];
}
for(int i=n;i>=1;i-=2)
{
ans^=c[i];
}
if(ans==0)
{
printf("NIE\n");
}
else
{
printf("TAK\n");
}
}
}
BZOJ1115[POI2009]石子游戏——阶梯Nim游戏的更多相关文章
- 阶梯nim游戏
阶梯nim游戏有n个阶梯,0-n-1,每个阶梯上有一堆石子,编号为i的阶梯上的石子只能移动到i-1上去,每次至少移动一个,最后所有的石子都移动到0号阶梯上了.结论:奇数阶梯上的石子异或起来,要是0,就 ...
- NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结
NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子 ...
- [bzoj1115][POI2009]石子游戏Kam_博弈论_阶梯博弈
石子游戏 Kam bzoj-1115 POI-2009 题目大意:给定n堆石子,两个人轮流取石子.每堆石子的个数都不少于前一堆石子.每次取后也必须维持这个性质.问谁有必胜策略. 注释:$1\le ca ...
- BZOJ1115 [POI2009]石子游戏Kam 【博弈论——阶梯游戏】
题目 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. ...
- BZOJ1115:[POI2009]石子游戏Kam(博弈论)
挺水的 听说是阶梯nim和,就去看了一下,然后就会了= = 观察题目,发现拿第i堆棋子k个造成的影响就是第i+1堆棋子能多拿k个 可以把模型转化为,有n堆石子,每次从某一堆拿一个石子,放在下一堆中,不 ...
- BZOJ 1874 取石子游戏 (NIM游戏)
题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...
- 石子游戏(nim游戏+按位考虑)
题意 给\(n\)堆石子,每次最多可以从一堆中取\(x\)个,问你\(x = 1 ... n\)时的答案. 解法 经典\(nim\)游戏,找规律知\(sg[i] = i \ mod \ (x+1)\) ...
- BZOJ 1022 / P4279 Luogu [SHOI2008]小约翰的游戏 (反Nim游戏) (Anti-SG)
题意 反Nim游戏,两人轮流选一堆石子拿,拿到最后一个的输.问先手是否必胜. 分析 怎么说,分类讨论? 情形1:首先考虑最简单的情况,所有石子数都为1.那么奇数堆石子为必败,偶数为必胜 情形2:然后考 ...
- [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...
随机推荐
- 监控虚拟机跟外部的tcp连接
1.监控虚拟机跟外部的tcp连接,如果连接数超过阈值,就在FORWARD把ip DROP ,并且发送邮件 root@InternetGateway:~# cat /root/scripts/check ...
- CF11D A Simple Task 状压DP
传送门 \(N \leq 19\)-- 不难想到一个状压:设\(f_{i,j,k}\)表示开头为\(i\).结尾为\(j\).经过的点数二进制下为\(k\)的简单路总数,贡献答案就看\(i,j\)之间 ...
- Luogu3524 POI2011 Party 图论、构造
题目传送门:https://www.luogu.org/problemnew/show/P3524 大意:给一个$N$个点的图,其中一定有一个大小为$\frac{2}{3}N$的团,程序需给出一个大小 ...
- java线程池和中断总结
目录 java线程池和中断总结 一. 线程池的使用 二. java中断机制 中断的处理 三. 线程间通信机制总结 java线程池和中断总结 本系列文是对自己学习多线程和平时使用过程中的知识梳理,不适合 ...
- Codeforces Round #481 (Div. 3)
我实在是因为无聊至极来写Div3题解 感觉我主要的作用也就是翻译一下题目 第一次线上打CF的比赛,手速很重要. 这次由于所有题目都是1A,所以罚时还可以. 下面开始讲题 A.Remove Duplic ...
- MGR主从不一致问题排查与修复
运行环境 linux:CentOS release 6.8 (Final) kernel:2.6.32-642.6.2.el6.x86_64 mysql Server version: 5.7.21- ...
- 聊聊Zookeeper应用场景、架构设计、选主机制
Zookeeper作为一个分布式协调系统提供了一项基本服务:分布式锁服务,分布式锁是分布式协调技术实现的核心内容.像配置管理.任务分发.组服务.分布式消息队列.分布式通知/协调等,这些应用实际上都是基 ...
- 来不及说什么了,Python 运维开发剁手价仅剩最后 2 天
51reboot 运维开发又双叒叕的搞活动了—— Python 运维开发 18 天训练营课程, 剁手价1299 最后2天 上课方式:网络直播/面授(仅限北京) DAY1 - DAY4 Python3 ...
- (9)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- JWT算法
一. JWT 简介 内部 Restful 接口可以“我家大门常打开”,但是如果要给 app 等使用的接口,则需要做权限校验,不能谁都随便调用. Restful 接口不是 web 网站,App 中很难直 ...
- vue路由\导航刷新后:ative\localStorage\url截取参数
<el-menu :default-active="$route.path" router mode="horizontal"> <el-me ...