题目描述

在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水
箱与外界之间有一堵高度无穷大的墙,因此水不可能漏到外面。已知水箱内每个格子的高度都是[0,H]之间的整数
,请统计有多少可能的水位情况。因为答案可能很大,请对10^9+7取模输出。两个情况不同当且仅当存在至少一个
方格的水位在两个情况中不同。

输入

第一行包含三个正整数n,m,H(n*m<=500000,1<=H<=10^9)。
接下来n行,每行m-1个整数a[i][j](1<=a[i][j]<=H),表示(i,j)和(i,j+1)之间的墙的高度。
接下来n-1行,每行m个整数b[i][j](1<=b[i][j]<=H),表示(i,j)和(i+1,j)之间的墙的高度。

输出

输出一行一个整数,即方案数模10^9+7的结果。

样例输入

3 2 2
1
1
1
1 2
1 1

样例输出

65
HINT
要么全部格子水位都是2,要么全部格子水位都在[0,1]之间,共1+2^6=65种情况。
 
容易看出这是个网格图,将每个格子看作一个点,格子与格子间的墙看作是点与点之间的边,墙高就是边权。
对于每个点,只有与它相连的边权最小的边是有用的,在这个边权之下这个点的水位可以是任意的。
一旦超过了这个边权,那么这个点与那条边连向的点的水位就一定要保持相同了。
那么我们可以按边权从小到大的顺序合并每个点(或联通块),同时记录每个联通块里的最大边权以及每个联通块中的方案数。
因为一个联通块超过其中最大边后,联通块中每个点的水位都是一致的,所以当合并两个联通块时设两个联通块中的方案数分别是g1,g2;两个联通块中最大边分别是h1,h2,合并这两个联通块的边权为v,那么合并后得到的联通块的方案数就是(g1+v-h1)*(g1+v-h2)。
当所有联通块都合并之后(也就是所有点都连通之后)所有点的水位是一同升高的,只要把整个联通块的方案数加上H-最后一次合并的边权就好了。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,m,H;
int x;
int f[500010];
int tot;
ll g[500010];
int h[500010];
int mod=1e9+7;
struct node
{
int x;
int y;
int v;
}s[1000010];
int cnt;
void add(int x,int y,int v)
{
s[++cnt].x=x;
s[cnt].y=y;
s[cnt].v=v;
}
bool cmp(node s,node t)
{
return s.v<t.v;
}
int find(int x)
{
if(f[x]==x)
{
return x;
}
return f[x]=find(f[x]);
}
int main()
{
scanf("%d%d%d",&n,&m,&H);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m-1;j++)
{
scanf("%d",&x);
add((i-1)*m+j,(i-1)*m+j+1,x);
}
}
for(int i=1;i<=n-1;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add((i-1)*m+j,i*m+j,x);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
f[(i-1)*m+j]=(i-1)*m+j;
g[(i-1)*m+j]=1;
}
}
sort(s+1,s+1+cnt,cmp);
for(int i=1;i<=cnt;i++)
{
int fx=find(s[i].x);
int fy=find(s[i].y);
if(fx!=fy)
{
g[fx]=(g[fx]+s[i].v-h[fx])*(g[fy]+s[i].v-h[fy])%mod;
f[fy]=fx;
h[fx]=s[i].v;
}
}
printf("%lld",(g[find(1)]+H-h[find(1)])%mod);
}

BZOJ5101[POI2018]Powódź——并查集的更多相关文章

  1. 【BZOJ5101】[POI2018]Powód 并查集

    [BZOJ5101][POI2018]Powód Description 在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无 ...

  2. [bzoj5101][POI2018]Powódź_并查集

    Powódź bzoj-5101 POI-2018 题目大意:在地面上有一个水箱,它的俯视图被划分成了$n$行$m$列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无穷大 ...

  3. BZOJ5101 POI2018Powódź(并查集)

    如果某个格子的积水量超过了该格子的某个挡板高度,那么挡板另一端的积水量就会与其相同.看起来是一个不断合并的过程,考虑并查集.枚举深度,维护每个连通块内的方案数,深度超过某挡板高度时,将两端的连通块合并 ...

  4. BZOJ5101 : [POI2018]Powód

    求出Kruskal重构树,那么重构树上每个点的取值范围是定的. 考虑树形DP,则对于一个点,要么所有点水位相同,要么还未发生合并. 故$dp[x]=up[x]-down[x]+1+dp[l[x]]\t ...

  5. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  6. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  7. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  8. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

  9. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

随机推荐

  1. 重度使用示波器进行优化分析——一个DSDA项目回顾

    这是若干年前一个项目,最近有时间整理一下.回忆起来,印象最深刻的就是重度使用示波器辅助分析,进行优化. 项目背景是在原有项目3G+项目基础上,增加一颗2G+ Modem,使支持DSDA功能. 在介绍D ...

  2. security相关链接整理

    token令牌 ssl协议 https协议 对称加密与非对称加密 认识ASP.NET Windows身份认证

  3. CF [2016-2017 ACM-ICPC CHINA-Final][GYM 101194 H] Great Cells

    很久以前做的一道思博题了,今天来补一补. 大致题意:在一个\(n*m\)的矩阵内填整数,数字在\([1,k]\)范围内.矩阵中某格的数为great number当且仅当与它同行同列的数字都严格比它小. ...

  4. Ubuntu轻松编译openJDK

    花了三天在windows上搞openJDK,对bash本来就不熟,加上各种莫名依赖和脚本里的bug,身心俱疲.最后make all的时候产生一个莫名其妙的错误说什么有warning且-Werror置为 ...

  5. 2018年高教社杯全国大学生数学建模竞赛B题解题思路

    题目 先贴下B题的题目吧 问题B    智能RGV的动态调度策略 图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC).1辆轨道式自动引 ...

  6. 在 Ionic2 TypeScript 项目中导入第三方 JS 库

    原文发表于我的技术博客 本文分享了在Ionic2 TypeScript 项目中导入第三方 JS 库的方法,供参考. 原文发表于我的技术博客 1. Typings 的方式 因在 TypeScript 中 ...

  7. Linux下环境变量配置方法梳理(.bash_profile和.bashrc的区别)

    在linux系统下,如果下载并安装了应用程序,在启动时很有可能在键入它的名称时出现"command not found"的提示内容.如果每次都到安装目标文件夹内,找到可执行文件来进 ...

  8. linux下向一个文件中的某行插入数据的做法

    sed -i 'ni\x' test.file        表示向test.file文件里的第n行的前面添加x内容sed -i 'na\x' test.file       表示向test.file ...

  9. Ansible之playbook的使用总结 - 运维笔记

    之前详细介绍了Ansible的安装, 配置, 以及Ansible常用模块的使用. 下面对Ansible的playbook用法做一小结. 为什么引入playbook?一般运维人员完成一个任务, 比如安装 ...

  10. websocket(三)——基于node sockit.io的即时通讯

    通过前面的学习发现,常见的websocket虽然可以很好地实现服务端和客户端的信息传递,但二者之间传递的数据只是简单的字符串,这对事物的描述,信息的传递是非常不友好的,下面将引入socket.io,来 ...