题目描述

Byteasar is a famous safe-cracker, who renounced his criminal activity and got into testing and certifying anti-burglary devices. He has just received a new kind of strongbox for tests: a combinatorial safe. A combinatorial safe is something different from a combination safe, even though it is opened with a rotary dial. The dial can be set in different positions, numbered from 0 to n-1. Setting the dial in some of these positions opens the safe, while in others it does not. And here is the combinatorial property, from which the name comes from: if x and y are opening positions, then so is (x+y) mod n too; note that is holds for x=y as well.
Byteasar tried k different positions of the dial: m1,m2….mk. The positions M1,M 2….Mk-1 did not open the safe, only the last position Mk did. Byteasar is already tired from checking these K positions and has thus absolutely no intention of trying the remaining ones. He would like to know however, based on what he already knows about the positions he tried, what is the maximum possible number of positions that open the safe. Help him by writing an appropriate program!

有一个密码箱,0到n-1中的某些整数是它的密码。
且满足,如果a和b都是它的密码,那么(a+b)%n也是它的密码(a,b可以相等)
某人试了k次密码,前k-1次都失败了,最后一次成功了。
问:该密码箱最多有多少不同的密码。

输入

The first line of the standard input gives two integers N and k, separated by a single space, (1<=K<=250000,k<=N<=10^14), The second line holds K different integers, also separated by single spaces, m1,m2….mk, 0<=Mi<N. You can assume that the input data correspond to a certain combinatorial safe that complies with the description above.
In tests worth approximately 70% of the points it holds that k<=1000. In some of those tests, worth approximately 20% of the points, the following conditions hold in addition: N< 10 ^8 and K<=100.

第一行n,k
下面一行k个整数,表示每次试的密码
保证存在合法解

1<=k<=250000 k<=n<=10^14

输出

Your program should print out to the first and only line of the standard output a single integer: the maximum number of the dial's positions that can open the safe.

一行,表示结果

样例输入

42 5
28 31 10 38 24

样例输出

14
 
  如果x,y是密码,那么gcd(x,y)的倍数就都是密码(证明在最后)。同理,如果x是密码,那么2x,3x,4x……kx都是密码,那么gcd(x,n)的倍数就都是密码,反之则一定不是。因为前k-1次都没试出来,所以gcd(a[i],n)(i<k)就都不是密码,假设x是密码,那么x一定不是gcd(a[i],n)的约数,又因为gcd(a[k],n)是密码,所以x一定是gcd(a[k],n)的约数,枚举gcd(a[k],n)的约数验证,取n/x最大的就好了。为什么两个数i,j都满足但答案不能是n/i+n/j?因为如果i,j互质,那么gcd(i,j)=1,这样所有n内的数就都是密码了,显然不行。如果i,j不互质,那么gcd(i,j)的答案在前面已经被计算过了,n/i+n/j会重复。
证明:
设d=gcd(x,y),x=a*d,y=b*d,因为px+qy一定是密码(p,q>0),所以d*(ap+bq)就一定是密码。而gcd(x,y)的任意倍数是d*(ap'+bq')其中p',q'不一定是正数,那么只要保证(ap'+bq')在%n意义下且在p',q'>0时能表示所有正数就好了。因为a,b互质,所以ap'+bq'=1一定有解,但其中有一个一定是负数,只要把那个数一直+n直到为正就好了。加一个数的n倍%n结果不变。再把上述二元一次方程左右两边扩大任意倍数,就能表示d的任意倍了。
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int k;
int flag;
long long ans;
long long n;
long long a[250010];
long long gcd(long long x,long long y)
{
if(y==0)
{
return x;
}
return gcd(y,x%y);
}
int cnt=0;
bool check(long long x)
{
for(int i=1;i<=cnt;i++)
{
if(a[i]%x==0)
{
return false;
}
}
return true;
}
int main()
{
long long y;
scanf("%lld%d",&n,&k);
for(int i=1;i<=k;i++)
{
scanf("%lld",&a[i]);
a[i]=gcd(a[i],n);
}
long long x=a[k];
ans=n;
sort(a+1,a+k);
for(int i=1;i<k;i++)
{
if(a[i]!=a[i-1])
{
a[++cnt]=a[i];
}
}
for(long long i=1;i*i<=x;i++)
{
if(x%i==0)
{
if(check(i))
{
ans=n/i;
break;
}
else if(check(a[k]/i))
{
ans=n/a[k]*i;
}
}
}
printf("%lld",ans);
}

BZOJ2277[Poi2011]Strongbox——数论的更多相关文章

  1. bzoj 2277 [Poi2011]Strongbox 数论

    2277: [Poi2011]Strongbox Time Limit: 60 Sec  Memory Limit: 32 MBSubmit: 527  Solved: 231[Submit][Sta ...

  2. bzoj2277 [Poi2011]Strongbox

    2277: [Poi2011]Strongbox Time Limit: 60 Sec  Memory Limit: 32 MBSubmit: 498  Solved: 218[Submit][Sta ...

  3. BZOJ2277 [Poi2011]Strongbox 【数论】

    题目链接 BZOJ2277 题解 orz太难了 如果一个数\(x\)是密码,那么所有\((x,n)\)的倍数都是密码 如果两个数\(x,y\)是密码,那么所有\((x,y)\)的倍数都是密码 那么如果 ...

  4. 【BZOJ】2277: [Poi2011]Strongbox

    题意 有一个密码箱,\(0\)到\(n-1\)中的某些整数是它的密码.如果\(a\)和\(b\)都是它的密码,那么\((a+b)%n\)也是它的密码(\(a,b\)可以相等).某人试了\(k\)次密码 ...

  5. BZOJ 2277 Poi2011 Strongbox

    题目大意:一个集合A,包含了0~n-1这n个数.另有一个集合B,满足: 1.B是A的子集. 2.如果a.b均在B中,则(a+b)%n也在B中(a=b亦可) 给出k个数ai,前k-1个不在B中,第k个在 ...

  6. POI2011题解

    POI2011题解 2214先咕一会... [BZOJ2212][POI2011]Tree Rotations 线段树合并模板题. #include<cstdio> #include< ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. POI做题笔记

    POI2011 Conspiracy (2-SAT) Description \(n\leq 5000\) Solution 发现可拆点然后使用2-SAT做,由于特殊的关系,可以证明每次只能交换两个集 ...

  9. [poi2011]bzoj 2277 —— strongbox·[洛谷3518]

    ·问题描述· 有一个密码箱,0到n-1中的某些数是它的密码.且满足:如果a和b都是它的密码,那么(a+b)%n也是它的密码.某人试了k次密码,前k-1次都失败了,最后一次成功. 问:该密码箱最多有多少 ...

随机推荐

  1. AliOS-Things linkkitapp解读

    app-example-linkkitapp是AliOS-Things提供的设备联网并且和阿里云IOT平台数据交互的一个示例程序: 1:application_start()程序在app_entry. ...

  2. IDEA注册jar包使用和常用插件

    IDEA注册jar包使用 点击获取下载地址或生成注册码 一.安装完成后,先不启动,首先如下图修改相关的地方. 二.启动IDEA,并且激活IDEA IDEA插件仓库 IntelliJ IDEA Plug ...

  3. blob 对象 实现分片上传 及 显示进度条

    blob对象介绍 一个 Blob对象表示一个不可变的, 原始数据的类似文件对象.Blob表示的数据不一定是一个JavaScript原生格式 blob对象本质上是js中的一个对象,里面可以储存大量的二进 ...

  4. CentOS7.4,anaconda3,python3.6,tensorflow环境下gdal的编译和问题解决

    CentOS7.4,anaconda3,python3.6,tensorflow环境下gdal的编译和问题解决 这是gdal可能会用到的额外的包,按自己需要先提前编译. 这里的话我主要用了proj,L ...

  5. BZOJ4911: [Sdoi2017]切树游戏

    BZOJ 4911 切树游戏 重构了三次.jpg 每次都把这个问题想简单了.jpg 果然我还是太菜了.jpg 这种题的题解可以一眼秒掉了,FWT+动态DP简直是裸的一批... 那么接下来,考虑如何维护 ...

  6. JavaWeb开发中采用FreeMarker生成Excel表格

            最近做了一个需求,要求导出一个采购合同的Excel表格,这个表格样式比较多.由于是合同,这个Excel表格里面有好多格式要求,比如结尾处签字那部分就有格式要求.这里介绍种采用FreeM ...

  7. [转]curl的错误代码

    转贴者按: 今天在使用curl的时候碰到了一个错误,如下所示: External Program Failed: D:\Tools\curl\curl.exe (return code was 18) ...

  8. [Oacle][Partition]Partition操作与 Index, Global Index 的关系

    [Oacle][Partition]Partition操作与 Index, Global Index 的关系: ■ Regarding the local index and the global i ...

  9. 机器学习 第五篇:分类(kNN)

    K最近邻(kNN,k-NearestNeighbor)算法是一种监督式的分类方法,但是,它并不存在单独的训练过程,在分类方法中属于惰性学习法,也就是说,当给定一个训练数据集时,惰性学习法简单地存储或稍 ...

  10. WCF的练习。

    最近稍微又学习了下WCF,并做了一些联系.觉得很有收获,把东西都上传到git上了.然后在这里做一个链接导航. 无废话WCF入门教程一[什么是WCF] 无废话WCF入门教程二[WCF应用的通信过程] 无 ...