相关概念:

有向图、无向图:有向图的边是双行道,无向图的边是单行道。在处理无向图时,可以把一条无向边看做方向相反的两条有向边。

圈 cycle / 回路 circuit:在相同顶点上开始并结束且长度大于0的通路。

环 loop:起点与终点重合的边。

负圈:含有负权边的圈。

  问题类型? 是否兼容负圈? 时间复杂度?
Bellman-Ford 单源 O(V·E)
Dijkstra 单源 × O(E·logV)
Floyd-Warshall 任意点对 O(V3)

1. Bellman-Ford 算法(单源) O(VE)

设d[]存放最短路径,对于每条边(from, to),d[to] = d[from] + cost 一定成立。

由于边在es[]中存储顺序的关系,可能出现计算到 d[to] 时 d[from] 还没出现的情况,此时d[to] 的值会继续保持INF,等到下一次循环再被更新。

当图中存在V个点时,从起点s出发共有V-1条路径,因此外层循环最多执行V-1次就能消除d[]中所有INF,并得到结果。如果图中存在负圈,最短路径会不断减小,外层循环执行次数就会超过V-1,因此只需检查更新次数是否达到V就能判断是否存在负圈。

 1 struct edge{int from,to,cost;};
2
3 edge es[MAX_E];
4 int d[MAX_V]; //shortest paths
5 int V,E; //number of vertices and edges
6
7 bool bellman_ford(int s)
8 {
9 for(int i=0;i<V;i++) //vertices are indexed from 0
10 d[i]=INF;
11 d[s]=0;
12 int n=0;
13 for(n=0;n<V;n++){ //to be executed |V|-1 times at most
14 bool update=false;
15 for(int i=0;i<E;i++){
16 edge e=es[i];
17 if(d[e.from]!=INF && d[e.to]>d[e.from]+e.cost){
18 d[e.to]=d[e.from]+e.cost;
19 update=true;
20 }
21 }
22 if(!update)
23 break;
24 if(n==V-1) //negative loops exists
25 return true;26 }
27 return false;
28 }

2.Dijkstra 算法(单源、无负圈)O(E·logV)

该算法的核心在于从已经确定最短路径的点出发,寻找相邻点的最短路径。

令d[s]=0,先更新s所有邻居的sp,入队,再从s所有邻居开始,更新它们的邻居的sp,以此类推……

借助升序优先队列,优先执行sp值小的点,可以避免内层for循环被不断执行,有效减小时间复杂度。

 1 struct edge{int to,cost;};
2 typedef pair<int,int> P; //first:sp second:termination
3
4 int V,E;
5 vector<edge> G[MAX_V]; //adjcent list
6 int d[MAX_V];
7
8 void dijkstra(int s)
9 {
10 priority_queue<P,vector<P>,greater<P>> que; //#include <queue>
11 fill(d,d+V+1,INF);
12 d[s]=0;
13 que.push(P(0,s));
14
15 while(!que.empty()){
16 P p=que.top(); que.pop();
17 int v=p.second;
18 if(d[v]<p.first) continue;
19 for(int i=0;i<G[v].size();i++){
20 edge e=G[v][i];
21 if(d[e.to]>d[v]+e.cost){
22 d[e.to]=d[v]+e.cost;
23 que.push(P(d[e.to],e.to)); //newly updated sp may change the sp of its neighbours
24 }
25 }
26 }
27 }

计算最短路径条数的方法:

维护数组 int cnt[MAX_V] 并初始化为 cnt[]=0; cnt[s]=1;

if ( d[e.to] > d[v]+e.cost )  cnt[e.to]=cnt[v]

else if ( d[e.to] == d[v]+e.cost )  cnt[e.to]+=cnt[v]

3.Floyd-Warshall 算法(任意点间) O(V3)

对于每个点对(i, j ) ,枚举中间点 k。i 到 j 的最短路径取经过中间点 k 和不经过中间点 k 两种情况的结果的最小值。

需要初始化:d[i][i]=0,不存在=INF

int d[MAX_V][MAX_V];  //weight of edges
int V,E; void floyd_warshall()
{
for(int k=0;k<V;k++)
for(int i=0;i<V;i++)
for(int j=0;j<V;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}

参考《挑战程序设计竞赛》(第二版),99-104;离散数学及其应用(中文第七版),595-612

最短路径(SP)问题相关算法与模板的更多相关文章

  1. 【2018寒假集训Day 7】【最短路径】三种算法的模板

    Luogu单源最短路径模版题 dijkstra #include<cstdio> #include<vector> using namespace std; const int ...

  2. [联赛可能考到]图论相关算法——COGS——联赛试题预测

    COGS图论相关算法 最小生成树 Kruskal+ufs int ufs(int x) { return f[x] == x ? x : f[x] = ufs(f[x]); } int Kruskal ...

  3. 盘点十大GIS相关算法

    1.道格拉斯-普克算法(Douglas–Peucker) 道格拉斯-普克算法(Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法.迭代适应点算法.分裂与合并算法)是将曲 ...

  4. 二叉树-你必须要懂!(二叉树相关算法实现-iOS)

    这几天详细了解了下二叉树的相关算法,原因是看了唐boy的一篇博客(你会翻转二叉树吗?),还有一篇关于百度的校园招聘面试经历,深刻体会到二叉树的重要性.于是乎,从网上收集并整理了一些关于二叉树的资料,及 ...

  5. 数据结构(C语言版)顺序栈相关算法的代码实现

    这两天完成了栈的顺序存储结构的相关算法,包括初始化.压栈.出栈.取栈顶元素.判断栈是否为空.返回栈长度.栈的遍历.清栈.销毁栈.这次的实现过程有两点收获,总结如下: 一.清楚遍历栈的概念 栈的遍历指的 ...

  6. 图论算法-Tarjan模板 【缩点;割顶;双连通分量】

    图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...

  7. [java,2017-05-15] 内存回收 (流程、时间、对象、相关算法)

    内存回收的流程 java的垃圾回收分为三个区域新生代.老年代. 永久代 一个对象实例化时 先去看伊甸园有没有足够的空间:如果有 不进行垃圾回收 ,对象直接在伊甸园存储:如果伊甸园内存已满,会进行一次m ...

  8. 【STL学习】堆相关算法详解与C++编程实现(Heap)

    转自:https://blog.csdn.net/xiajun07061225/article/details/8553808 堆简介   堆并不是STL的组件,但是经常充当着底层实现结构.比如优先级 ...

  9. JS实现最短路径之弗洛伊德(Floyd)算法

    弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有 ...

随机推荐

  1. Linux查看和修改文件时间

    参考http://www.361way.com/chang-file-time/1632.html 一:查看时间 1:查看文件的具体时间信息 File: `probn' Size: Blocks: I ...

  2. ionic3使用cordova创建自定义插件

    1 安装 plugman 插件 npm --registry https://registry.npm.taobao.org install -g plugman 2 新建组件 新建一个插件文件夹,进 ...

  3. [转]jvm调优-命令大全(jps jstat jmap jhat jstack jinfo)

    运用jvm自带的命令可以方便的在生产监控和打印堆栈的日志信息帮忙我们来定位问题!虽然jvm调优成熟的工具已经有很多:jconsole.大名鼎鼎的VisualVM,IBM的Memory Analyzer ...

  4. iOS ReactiveCocoa的使用

    一.ReactiveCocoa简介 reactiveCocoa简称RAC,它是一个三方框架,很多人把它叫做函数响应式编程框架,因为它具有函数式编程和响应式编程的特性. 由于该框架的编程思想,使得它具有 ...

  5. 转:通过ASP.Net页面获取域用户名(当前登陆的用户)

    通过ASP.Net页面获取域用户名(当前登陆的用户) 原文地址: https://www.cnblogs.com/fast-michael/archive/2011/03/14/2057954.htm ...

  6. 笔记本 原来win10系统改装win7系统遇到 invaid signature detected.check secure boot policy setup问题

    这次操作的笔记本电脑是   华硕R414U 大家如果遇到类似问题的话也可以参考这个方法,但是必须搞清楚电脑的型号,型号不同操作起来有差别的 我这里选择的重装系统的方法是最简单粗暴的硬盘安装方法,怎么硬 ...

  7. centos7安装elasticsearch6.3.x集群并破解安装x-pack

    一.环境信息及安装前准备 主机角色(内存不要小于1G): 软件及版本(百度网盘链接地址和密码:链接: https://pan.baidu.com/s/17bYc8MRw54GWCQCXR6pKjg 提 ...

  8. httpput

    String doHttpPut(String rpmName, String cookie) throws UnsupportedEncodingException, IOException, Cl ...

  9. win10安装mysql一直卡在最后一步进行不下去

    新买的电脑,mysql的win10一直安装不了,一直卡在最后一步.仔细阅读下面文章解决. https://blog.csdn.net/fpga_zy/article/details/80689265

  10. c#操作excel方式三:使用Microsoft.Office.Interop.Excel.dll读取Excel文件

    1.引用Microsoft.Office.Interop.Excel.dll 2.引用命名空间.使用别名 using System.Reflection; using Excel = Microsof ...