一、问题由来

在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。

离散特征的编码分为两种情况:

  1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码

  2、离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3}

使用pandas可以很方便的对离散型特征进行one-hot编码

import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1']]) df.columns = ['color', 'size', 'prize', 'class label'] size_mapping = {
'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping) class_mapping = {label:idx for idx,label in enumerate(set(df['class label']))}
df['class label'] = df['class label'].map(class_mapping)

例如,考虑一下的三个特征:

["male", "female"]

["from Europe", "from US", "from Asia"]

["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]

如果将上述特征用数字表示,效率会高很多。例如:

["male", "from US", "uses Internet Explorer"] 表示为[, , ]

["female", "from Asia", "uses Chrome"]表示为[, , ]

但是,即使转化为数字表示后,上述数据也不能直接用在我们的分类器中。因为,分类器往往默认数据数据是连续的(可以计算距离?),并且是有序的(而上面这个0并不是说比1要高级)。但是,按照我们上述的表示,数字并不是有序的,而是随机分配的。

独热编码

为了解决上述问题,其中一种可能的解决方法是采用独热编码(One-Hot Encoding)。独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。

例如:

自然状态码为:,,,,,

独热编码为:,,,,,

可以这样理解,对于每一个特征,如果它有m个可能值,那么经过独热编码后,就变成了m个二元特征(如成绩这个特征有好,中,差变成one-hot就是100, 010, 001)。并且,这些特征互斥,每次只有一个激活。因此,数据会变成稀疏的。

这样做的好处主要有:

  1. 解决了分类器不好处理属性数据的问题

  2. 在一定程度上也起到了扩充特征的作用

  实现方法一:pandas之get_dummies方法

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False)

  该方法可以讲类别变量转换成新增的虚拟变量/指示变量。

  常用参数

data : array-like, Series, or DataFrame
输入的数据
prefix : string, list of strings, or dict of strings, default None
get_dummies转换后,列名的前缀
*columns : list-like, default None
指定需要实现类别转换的列名
dummy_na : bool, default False
增加一列表示空缺值,如果False就忽略空缺值
drop_first : bool, default False
获得k中的k-1个类别值,去除第一个

  1、实验

 实现方法二:sklearn

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) # fit来学习编码
enc.transform([[0, 1, 3]]).toarray() # 进行编码

输出:array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

数据矩阵是4*3,即4个数据,3个特征维度。

0 0 3                      观察左边的数据矩阵,第一列为第一个特征维度,有两种取值0\1. 所以对应编码方式为10 、01

1 1 0                                               同理,第二列为第二个特征维度,有三种取值0\1\2,所以对应编码方式为100、010、001

0 2 1                                               同理,第三列为第三个特征维度,有四中取值0\1\2\3,所以对应编码方式为1000、0100、0010、0001

1 0 2

再来看要进行编码的参数[0 , 1,  3], 0作为第一个特征编码为10,  1作为第二个特征编码为010, 3作为第三个特征编码为0001.  故此编码结果为 1 0 0 1 0 0 0 0 1

三. 为什么要独热编码?

正如上文所言,独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

为什么特征向量要映射到欧式空间?

将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

四 .独热编码优缺点

  • 优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  • 缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

五. 什么情况下(不)用独热编码?

  • 用:独热编码用来解决类别型数据的离散值问题,
  • 不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。  Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度

  总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。

六.  什么情况下(不)需要归一化?

  • 需要: 基于参数的模型或基于距离的模型,都是要进行特征的归一化。
  • 不需要:基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。

七、one-hot编码为什么可以解决类别型数据的离散值问题

  首先,one-hot编码是N位状态寄存器为N个状态进行编码的方式 
  eg:高、中、低不可分,→ 用0 0 0 三位编码之后变得可分了,并且成为互相独立的事件 
       类似 SVM中,原本线性不可分的特征,经过project之后到高维之后变得可分了 
  GBDT处理高维稀疏矩阵的时候效果并不好,即使是低维的稀疏矩阵也未必比SVM好

八、Tree Model不太需要one-hot编码

  对于决策树来说,one-hot的本质是增加树的深度 
  tree-model是在动态的过程中生成类似 One-Hot + Feature Crossing 的机制 
    1. 一个特征或者多个特征最终转换成一个叶子节点作为编码 ,one-hot可以理解成三个独立事件 
    2. 决策树是没有特征大小的概念的,只有特征处于他分布的哪一部分的概念 
  one-hot可以解决线性可分问题 但是比不上label econding 
  one-hot降维后的缺点:

  • 降维前可以交叉的降维后可能变得不能交叉

数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码的更多相关文章

  1. OneHotEncoder独热编码和 LabelEncoder标签编码

    学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到 ...

  2. scikit-learn与数据预处理

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  3. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  4. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  5. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  6. 数据预处理之独热编码(One-Hot Encoding)(转载)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  7. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  8. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  9. Scikit-learn库中的数据预处理:独热编码(二)

    在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为 ...

随机推荐

  1. 改善Python程序的条条建议

    1:引论   建议1.理解Pythonic概念—-详见Python中的<Python之禅> 建议2.编写Pythonic代码 避免不规范代码,比如只用大小写区分变量.使用容易混淆的变量名. ...

  2. python:3种爬虫的优缺点

                                                                 性能对比            爬取方法            性    能 ...

  3. java-IO流-字节流-概述及分类、FileInputStream、FileOutputStream、available()方法、定义小数组、BufferedInputStream、BufferedOutputStream、flush和close方法的区别、流的标准处理异常代码

    1.IO流概述及其分类 * 1.概念      * IO流用来处理设备之间的数据传输      * Java对数据的操作是通过流的方式      * Java用于操作流的类都在IO包中      *  ...

  4. vue实现淘宝购物车功能

    淘宝购物车功能,效果如下图 非常简单的逻辑,没有做代码的封装,代码如下 <div class="list-container"> <div class=" ...

  5. poj2279——Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  6. 聊聊Java happens-before原则

    无论处理器.JVM.编译器都会都保证程序正确的前提下尽可能的对指令执行效率进行优化,进行指令重排等操作.而要保证程序的执行结果的正确,则必须要遵循JMM中规定的happens-before原则. 在J ...

  7. [JAVA]JAVA遍历Map的几种方式

    //遍历key for (String key : dic.keySet() ) { System.out.println(key + dic.get(key)); } //遍历values for ...

  8. C# System.IO和对文件的读写操作

      System.IO命名空间中常用的非抽象类 BinaryReader 从二进制流中读取原始数据 BinaryWriter 从二进制格式中写入原始数据 BufferedStream 字节流的临时存储 ...

  9. Custom Grid Columns - FireMonkey Guide

    原文 http://monkeystyler.com/guide/Custom-Grid-Columns ack to FireMonkey Topics As we saw in TGrid a F ...

  10. C++Primer第五版——习题答案详解(九)

    习题答案目录:https://www.cnblogs.com/Mered1th/p/10485695.html 第10章 泛型算法 练习10.1 #include<iostream> #i ...