The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 21868   Accepted: 9809

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but
it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and,
of course, a cow may be only assigned to one stall. 

Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds
to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will
be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define MAXN 100000+10
vector<int>G[10000];
int pipei[MAXN],used[MAXN],n,m;
int find(int u)
{
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!used[v])
{
used[v]=1;
if(pipei[v]==-1||find(pipei[v]))
{
pipei[v]=u;
return 1;
}
}
}
return 0;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=1;i<=n;i++)
G[i].clear();
memset(pipei,-1,sizeof(pipei));
for(int i=1;i<=n;i++)
{
int t;
scanf("%d",&t);
while(t--)
{
int a;
scanf("%d",&a);
G[i].push_back(a);
}
}
int ans=0;
for(int i=1;i<=n;i++)
{
memset(used,0,sizeof(used));
ans+=find(i);
}
printf("%d\n",ans);
}
return 0;
}

poj--1274--The Perfect Stall(匈牙利裸题)的更多相关文章

  1. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  2. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  3. poj——1274 The Perfect Stall

    poj——1274   The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25709   A ...

  4. POJ 1274 The Perfect Stall

    题意:有n只牛,m个牛圈(大概是),告诉你每只牛想去哪个牛圈,每个牛只能去一个牛圈,每个牛圈只能装一只牛,问最多能让几只牛有牛圈住. 解法:二分图匹配.匈牙利裸题…… 代码: #include< ...

  5. poj 1274 The Perfect Stall【匈牙利算法模板题】

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20874   Accepted: 942 ...

  6. POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24081   Accepted: 106 ...

  7. poj 1274 The Perfect Stall (二分匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17768   Accepted: 810 ...

  8. poj —— 1274 The Perfect Stall

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26274   Accepted: 116 ...

  9. POJ 1274 The Perfect Stall(二分图 && 匈牙利 && 最小点覆盖)

    嗯... 题目链接:http://poj.org/problem?id=1274 一道很经典的匈牙利算法的题目: 将每只奶牛看成二分图中左边的点,将牛圈看成二分图中右边的点,如果奶牛看上某个牛圈,就将 ...

随机推荐

  1. ibatis知识点

    1:ibatis是apache的一个开源的项目,是一个O/R mapping解决方案,优点,小巧,灵活.2:搭建环境:导入ibatis相关jar包,jdbc驱动包等3:配置文件: jdbc连接的属性文 ...

  2. JS——scroll封装

    DTD未声明:document.body.scrollTop DTD已声明:document.documentElement.scrollTop 火狐谷歌IE9:window.pageYOffset ...

  3. WebAPI PUT,DELETE请求404

  4. Python星号表达式

    有时候可能想分解出某些值然后丢弃它们,可以使用诸如 _ 或者 ign(ignored)等常用来表示待丢弃值的变量名: record = ('ACME', 50, 123.45, (12, 18, 20 ...

  5. switch方法中使用数字区间

    function getCategory(age) { var category = ""; switch (true) { case isNaN(age): category = ...

  6. git 缓存密码导致的不能和远程仓库交互unable to access... 403错误

    尝试了各种方式,包括卸载等最终解决方案: 查看本机的credential 是否已经被清空. 如果输入了 git config credential.helper 命令之后没有输出,说明 git 的配置 ...

  7. PAT_A1003#Emergency

    Source: PAT A1003 Emergency (25 分) Description: As an emergency rescue team leader of a city, you ar ...

  8. 31.IK分词器配置文件讲解以及自定义词库

    主要知识点: 知道IK默认的配置文件信息 自定义词库     一.ik配置文件     ik配置文件地址:es/plugins/ik/config目录     IKAnalyzer.cfg.xml:用 ...

  9. BZOJ 2501 [usaco2010 Oct]Soda Machine

    [题意概述] 给出一个[0,1,000,000,000]的整数数轴,刚开始每个位置都为0,有n个区间加操作,最后询问数轴上最大的数是多少. [题解] 我写的是离散化后线段树维护区间最值. 其实貌似不用 ...

  10. Django——12 中间件 上下文处理器 admin后台

    Django 中间件 中间件介绍 中间件的第一个例子 中间件的第二个例子 上下文处理器 admin后台管理   中间件 Django中间件(Middleware)是一个轻量级.底层的“插件”系统,可以 ...