20.1 Redis基础配置文件

20.2 Redis备份(持久化)

save 900 1
save 300 10
save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes # The filename where to dump the DB
dbfilename dump.rdb # The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir ./ ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
# 1) Redis replication is asynchronous, but you can configure a master to
# stop accepting writes if it appears to be not connected with at least
# a given number of slaves.
# 2) Redis slaves are able to perform a partial resynchronization with the
# master if the replication link is lost for a relatively small amount of
# time. You may want to configure the replication backlog size (see the next
# sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
# network partition slaves automatically try to reconnect to masters
# and resynchronize with them.
#
# slaveof <masterip> <masterport> # If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password> # When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
#
slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
slave-read-only yes # Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New slaves and reconnecting slaves that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the slaves.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
# file on disk. Later the file is transferred by the parent
# process to the slaves incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
# RDB file to slave sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more slaves
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new slaves arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple slaves
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the slaves.
#
# This is important since once the transfer starts, it is not possible to serve
# new slaves arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more slaves arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10 # The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100 # It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared # Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000 # If Redis is to be used as an in-memory-only cache without any kind of
# persistence, then the fork() mechanism used by the background AOF/RDB
# persistence is unnecessary. As an optimization, all persistence can be
# turned off in the Windows version of Redis. This will redirect heap
# allocations to the system heap allocator, and disable commands that would
# otherwise cause fork() operations: BGSAVE and BGREWRITEAOF.
# This flag may not be combined with any of the other flags that configure
# AOF and RDB operations.
# persistence-available [(yes)|no] # Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# WARNING: not setting maxmemory will cause Redis to terminate with an
# out-of-memory exception if the heap limit is reached.
#
# NOTE: since Redis uses the system paging file to allocate the heap memory,
# the Working Set memory usage showed by the Windows Task Manager or by other
# tools such as ProcessExplorer will not always be accurate. For example, right
# after a background save of the RDB or the AOF files, the working set value
# may drop significantly. In order to check the correct amount of memory used
# by the redis-server to store the data, use the INFO client command. The INFO
# command shows only the memory used to store the redis data, not the extra
# memory used by the Windows process for its own requirements. Th3 extra amount
# of memory not reported by the INFO command can be calculated subtracting the
# Peak Working Set reported by the Windows Task Manager and the used_memory_peak
# reported by the INFO command.
#
# maxmemory <bytes> # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can select as well the sample
# size to check. For instance for default Redis will check three keys and
# pick the one that was used less recently, you can change the sample size
# using the following configuration directive.
#
# maxmemory-samples 3 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof")
appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log . Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec". # appendfsync always
appendfsync everysec
# appendfsync no # When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no # Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature. auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes

20.3 Redis内存回收策略

# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations

20.4 复制

20.4.1 主从同步基础概念

20.4.2 Redis主从同步配置

坑爹装Virtual Box增强都会报错,哦,我记得了,应该要用超级管理员账户登录才可以安装增强。

接下来安装一下Virtual Box的增强功能吧,Ubuntu系统应该没问题,不需要配置。

make install

利用Virtual Box的虚拟机克隆功能将刚刚那个linux系统克隆一份作为slave,并修改其IP为192.168.0.110。

可以通过Vritualbox自带的一个命令行工具解决,UI上没有提供对应的解决方案

1.定位到Vritualbox的安装目录,不能用全路径的方式直接执行该命令行

2.执行VBoxManage.exe clonevdi "C:\Users\zhongzh\VirtualBox VMs\ubuntu-17.04-desktop-amd64\ubuntu-17.04-desktop-amd64.vdi" "C:\Users\zhongzh\VirtualBox VMs\ubuntu-17.04-desktop-amd64\ubuntu-17.04-desktop-amd64_1.vdi"

执行过程,大概就是这样了,原本一个10G的vdi,几分钟就克隆完了

C:\Program Files\Oracle\VirtualBox>VBoxManage.exe clonevdi "C:\Users\zhongzh\Vir
tualBox VMs\ubuntu-17.04-desktop-amd64\ubuntu-17.04-desktop-amd64.vdi" "C:\Users
\zhongzh\VirtualBox VMs\ubuntu-17.04-desktop-amd64\ubuntu-17.04-desktop-amd64_1.
vdi"
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Clone medium created in format 'VDI'. UUID: 4e5b286e-3d15-45eb-99fe-f48f9f6062f2

应该是网络问题,因为master和slave都ping不通宿主机,调试一下网络

修改master和slave的网络配置文件

然后master和slave就可以互相ping和telnet通了

20.4.3 Redis主从同步过程

多从机同步机制,如图20-4所示。

图20-4 多从机同步机制

20.5 哨兵(Sentinel)模式

20.5.1 哨兵模式概述

图20-5 Redis哨兵

图20-6 多哨兵监控Redis

20.5.2 搭建哨兵模式

20.5.3 在Java中使用哨兵模式

20.5.4 哨兵模式的其他配置项

第20章 Redis配置的更多相关文章

  1. Redis配置统计字典

    本章将对Redis的系统状态信息(info命令结果)和Redis的所有配置(包括Standalone.Sentinel.Cluster三种模式)做一个全面的梳理,希望本章能够成为Redis配置统计字典 ...

  2. 第20章 使用LNMP架构部署动态网站环境

    章节概述: 本章节将从Linux系统的软件安装方式讲起,带领读者分辨RPM软件包与源码安装的区别.并能够理解它们的优缺点. Nginx是一款相当优秀的用于部署动态网站的服务程序,Nginx具有不错的稳 ...

  3. 转:Redis 配置为 Service 系统服务

    在Linux中,将程序配置为服务后,就可以使用service命令对系统服务进行管理,如:start(启动).stop(停止).restart(重启)等.Redis安装后默认不会配置为系统服务,本文将介 ...

  4. springboot学习笔记-4 整合Druid数据源和使用@Cache简化redis配置

    一.整合Druid数据源 Druid是一个关系型数据库连接池,是阿里巴巴的一个开源项目,Druid在监控,可扩展性,稳定性和性能方面具有比较明显的优势.通过Druid提供的监控功能,可以实时观察数据库 ...

  5. 【RL-TCPnet网络教程】第20章 RL-TCPnet之BSD Socket客户端

    第20章      RL-TCPnet之BSD Socket客户端 本章节为大家讲解RL-TCPnet的BSD Socket,学习本章节前,务必要优先学习第18章的Socket基础知识.有了这些基础知 ...

  6. Redis详细讲解(Redis原理,Redis安装,Redis配置,Redis使用,Redis命令)

    一.Redis介绍 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发 ...

  7. redis实战笔记(3)-第3章 Redis命令

    第3章 Redis命令   本章主要内容 字符串命令. 列表命令和集合命令 散列命令和有序集合命令 发布命令与订阅命令 其他命令   在每个不同的数据类型的章节里, 展示的都是该数据类型所独有的. 最 ...

  8. Redis 基础:Redis 配置

    Redis 配置 Redis的配置文件位于Redis安装目录下,文件名为redis.conf.可以通过CONFIG命令查看或设置配置项.其语法为: # Redis CONFIG命令格式如下: > ...

  9. [Real World Haskell翻译]第20章 Haskell系统编程

    第20章 Haskell系统编程 到目前为止,我们已经讨论了大多数的高层次的概念.Haskell也可以用于较低级别的系统编程.很可能是用haskell编写出底层的与操作系统接口的程序. 在本章中,我们 ...

随机推荐

  1. PHP开发笔记(三)关于PHP伪静态的问题总结

    Apache 第一个问题就是关于PHPStudy集成Apache环境下5.5版本以上”No input file specified“问题. 针对TP5框架,以下是.htaccess文件的配置,PHP ...

  2. Docker 导入镜像报错:open /var/lib/docker/tmp/docker-import-743441288/redis-3.0.7/json: no such file or directory

    下载好了redis的tar包,然后导入redis镜像是报错open /var/lib/docker/tmp/docker-import-743441288/redis-3.0.7/json: no s ...

  3. loadrunner录制不了

    我在使用loadrunner过程中遇到的问题是,录制脚本时候能够打开firefox,但是无法打开IE,降低IE版本以后仍然不行. 1.在录制脚本时Start Recoding中,默认如下,这样有可能I ...

  4. 【JavaScript框架封装】自己动手封装一个涵盖JQuery基本功能的框架及核心源码分享(单文件版本)

    整个封装过程及阅读JQuery源码的过程基本上持续了一个月吧,最终实现了一个大概30%的JQuery功能的框架版本,但是里面涉及的知识点也是非常多的,总共的代码加上相关的注释大概在3000行左右吧,但 ...

  5. 第1章 面向对象的JavaScript

    针对基础知识的每一个小点,我都写了一些小例子,https://github.com/huyanluanyu1989/DesignPatterns.git,便于大家理解,如有疑问,大家可留言给我,最近工 ...

  6. 数组(day07)

    数组名称不可以代表存储区 数组名称可以代表数组里第一个存储区的地址 可以对数组名称进行sizeof计算,结果是 数组里所有存储区的总大小 C99规范里可以使用变长数组 声明变长数组的时候可以用变量表示 ...

  7. 磁盘及文件系统管理(以及btrfs)

    Linux系统管理 磁盘分区及文件系统管理 raid lvm 网络属性管理 程序包管理 sed及awk 进程查看和管理 内核管理(内核的编译和安装) 系统启动流程 定制,编译内核,busybox 系统 ...

  8. django数据库设置为MySQL

    django默认使用sqlite,然后想使用MySQL数据库 在项目的setting文件中找到 DATABASES = { 'default': { 'ENGINE': 'django.db.back ...

  9. 编码的由来,ASCII编码,和字节的形成

    一.编码的由来 计算机只能计算和识别二进制,必须让计算机识别文字,才能和计算机进行交互,彼此也才能通过计算机通信. 由此,有了ASCII编码的诞生,它起始于50年代后期,在1967年定案,是最初美国国 ...

  10. 重新学习html和css

    当初学习前端的时候,属于快速入门那种,没有好好深入学习html和css.如今,在空闲时间重新拿起基础书学习,都会写到一些新的知识. 1.css实现圆角.渐变功能.使用border-radius以及li ...