// uva 10534 Wavio Sequence
//
// 能够将题目转化为经典的LIS。
// 从左往右LIS记作d[i],从右往左LIS记作p[i];
// 则最后当中的min(d[i],p[i])就是这个波动序列的一半
// 在这最后的min(d[i],p[i]) * 2 + 1 的最大值就是我们所要求的答案
//
// 这题開始想的最后的答案是d[i]==p[i]的时候求最大。 // 可是这样是不正确的,比如n=4,
// 1,3,1,0
// 最长的应该是3,可是我的答案是1,明显是错的
//
// 细致想来,确实是这样。仅仅要取min(d[i],p[i])的最小值作为一半就能够了
//
// 还是欠缺考虑。继续练 #include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#define ceil(a,b) (((a)+(b)-1)/(b))
#define endl '\n'
#define gcd __gcd
#define highBit(x) (1ULL<<(63-__builtin_clzll(x)))
#define popCount __builtin_popcountll
typedef long long ll;
using namespace std;
const int MOD = 1000000007;
const long double PI = acos(-1.L); const int maxn = 10008;
const int inf = 0x7f7f7f7f;
int a[maxn];
int b[maxn];
int d[maxn];
int p[maxn];
int g[maxn];
int n; void lis(int a[],int d[]){
memset(g,inf,sizeof(g));
int k;
for (int i=1;i<=n;i++){
k = lower_bound(g+1,g+n+1,a[i])-g;
d[i] = k;
g[k] = a[i];
}
} void print(int a[]){
for (int i=1;i<=n;i++){
printf("%d ",a[i]);
}
puts("");
} void init(){
for (int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[n-i+1] = a[i];
}
memset(d,inf,sizeof(d));
memset(p,inf,sizeof(p));
lis(a,d);
lis(b,p);
int ans = 1;
for (int i=1;i<=n;i++){
// if (d[i]==p[n-i+1]){
// cout << i << "----" << d[i] << endl;
// ans = max(ans,d[i] * 2 - 1);
// }
ans = max(ans,min(d[i],p[n-i+1]) * 2 - 1);
}
printf("%d\n",ans);
print(d);
print(p);
} int main() {
//freopen("E:\\Code\\1.txt","r",stdin);
while(scanf("%d",&n)!=EOF){
init();
}
return 0;
}

uva 10534 Wavio Sequence LIS的更多相关文章

  1. UVa 10534 Wavio Sequence (LIS+暴力)

    题意:给定一个序列,求一个最长子序列,使得序列长度为奇数,并且前一半严格递增,后一半严格递减. 析:先正向和逆向分别求一次LIS,然后再枚举中间的那个数,找得最长的那个序列. 代码如下: #pragm ...

  2. LIS UVA 10534 Wavio Sequence

    题目传送门 题意:找对称的,形如:123454321 子序列的最长长度 分析:LIS的nlogn的做法,首先从前扫到尾,记录每个位置的最长上升子序列,从后扫到头同理.因为是对称的,所以取较小值*2-1 ...

  3. UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)

    Wavio Sequence  Wavio is a sequence of integers. It has some interesting properties. ·  Wavio is of ...

  4. UVA 10534 Wavio Sequence

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=17&p ...

  5. 【UVa】Wavio Sequence(dp)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. UVa10534 - Wavio Sequence(LIS)

    题目大意 给定一个长度为n的整数序列,求个最长子序列(不一定连续),使得该序列的长度为奇数2k+1,前k+1个数严格递增,后k+1个数严格递减.注意,严格递增意味着该序列中的两个相邻数不能相同.n&l ...

  7. UVA 10534 三 Wavio Sequence

    Wavio Sequence Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Sta ...

  8. BNUOJ 14381 Wavio Sequence

    Wavio Sequence Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Origina ...

  9. HOJ 2985 Wavio Sequence(最长递增子序列以及其O(n*logn)算法)

    Wavio Sequence My Tags (Edit) Source : UVA Time limit : 1 sec Memory limit : 32 M Submitted : 296, A ...

随机推荐

  1. 大数据攻城狮之Linux基础------rpm软件管理

    rpm的英文名称为: Redhat package manager 常用的命令加组合: i 安装 rpm -ivh 软件包名 当然我们的rpm也可以支持多包同时操作 rpm -ivh 软件包1 软件包 ...

  2. 康少带你玩转JavaScript

    目录 1.JavaScript简述 2.JavaScript引入方式 3.JavaScript语法基础 4.JavaScript数据类型 5.运算符 6.流程控制 7.函数 8.内置对象和方法 1.J ...

  3. Unity3d 刚体

    using UnityEngine; using System.Collections; public class rigidbody_ : MonoBehaviour { private Rigid ...

  4. 7) 十分钟学会android--Activity的生命周期之暂停与恢复

    在正常使用app时,前端的activity有时会被其他可见的组件阻塞(obstructed),从而导致当前的activity进入Pause状态.例如,当打开一个半透明的activity时(例如以对话框 ...

  5. 杭电1003 Max Sum TLE

    这一题目是要求连续子序列的最大和,所以在看到题目的一瞬间就想到的是把所有情况列举出来,再两个两个的比较,取最大的(即为更新最大值的意思),这样的思路很简单,但是会超时,时间复杂度为O(n^3),因为有 ...

  6. swift pragma mark

    众所周知,大家在OC中对代码进行逻辑组织 用的是#pragma mark - ,生成分隔线 用#pragma mark 函数说明,来生成一个函数的说明X 但在swift中,这个语法就不支持了,毕竟它是 ...

  7. Win10怎么批量修改文件后缀名?

    Win10怎么批量修改文件后缀名?一般我们都是右击重命名,但是,如果要改的文件很多的话,这样做事不行的,该怎么批量修改后缀名呢?下面我们一起来看看两种解决办法 通常我们修改文件后缀名都是右击>& ...

  8. Kattis - iBoard

    iBoard After years of success with a single-button mouse, a well known computer company has decided ...

  9. print输出带颜色的方法详解

    书写格式:     开头部分:\033[显示方式;前景色;背景色m + 结尾部分:\033[0m      注意:开头部分的三个参数:显示方式,前景色,背景色是可选参数,可以只写其中的某一个:另外由于 ...

  10. web前端学习基础知识(1)

    下载Atom插件和主题安装和配置 1.官网 https://atom.io/ 2.百度网盘上http://pan.baidu.com/s/1ntszCgT 安装subline以及插件的安装,再去了解它 ...