UVA 11542 Square 高斯消元 异或方程组求解
题目链接:点击打开链接
白书的例题练练手。
。
。
P161
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define ll int
#define LL long long
const int mod = 1000000009;
const int maxn = 510;
const int maxp = 100;
ll prime[1000],primenum;//有primenum个素数 math.h
void PRIME(ll Max_Prime){
primenum=0;
prime[primenum++]=2;
for(ll i=3;i<=Max_Prime;i+=2)
for(ll j=0;j<primenum;j++)
if(i%prime[j]==0)break;
else if(prime[j]>sqrt((double)i) || j==primenum-1)
{
prime[primenum++]=i;
break;
}
} typedef int Matrix[maxn][maxn]; int rank(Matrix A, int m, int n) { //m个方程n个变量
int i = 0, j = 0, k, r, u;
while(i < m && j < n)
{
r = i;
for(k = i; k < m; k++)
if(A[k][j])
{ r = k; break; }
if(A[r][j])
{
if(r != i)
for(k = 0; k <= n; k++) swap(A[r][k], A[i][k]);
for(u = i+1; u < m; u++) if(A[u][j])
for(k = i; k <= n; k++) A[u][k] ^= A[i][k];
i++;
}
j++;
}
return i;
} Matrix A; int main(){
PRIME(500);
int T; cin>>T;
while(T--) {
int n, maxp = 0;
long long x;
cin>> n;
memset(A, 0, sizeof A);
for(int i = 0; i < n; i++)
{
cin>> x;
for(int j = 0; j < primenum; j++)
while(x % prime[j] == 0)
{
maxp = max(maxp, j);
x /= prime[j];
A[j][i] ^= 1;
}
}
int r = rank(A, maxp+1, n);
cout<< (1LL << (n-r))-1 <<endl;
}
return 0;
}
UVA 11542 Square 高斯消元 异或方程组求解的更多相关文章
- UVA 11542 - Square(高斯消元)
UVA 11542 - Square 题目链接 题意:给定一些数字.保证这些数字质因子不会超过500,求这些数字中选出几个,乘积为全然平方数,问有几种选法 思路:对每一个数字分解成质因子后.发现假设要 ...
- UVa 11542 Square (高斯消元)
题意:给定 n 个数,从中选出一个,或者是多个,使得选出的整数的乘积是完全平方数,求一共有多少种选法,整数的素因子不大于 500. 析:从题目素因子不超过 500,就知道要把每个数进行分解.因为结果要 ...
- UVA11542 Square(高斯消元 异或方程组)
建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】
高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...
- UVa 11542 (高斯消元 异或方程组) Square
书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #inc ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
- 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树
[题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...
- poj1830(高斯消元解mod2方程组)
题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...
随机推荐
- Web进行压力测试的小工具
在Linux下对Web进行压力测试的小工具有很多,比较出名的有AB.虽然AB可以运行在windows下,但对于想简单界面操作的朋友有点不太习惯.其实vs.net也提供压力测试功能但显然显得太重了,在测 ...
- 一个 passive 引发的bug
不是什么很难的东西,权且做个记录. 首先说下背景,目前的项目中,需要同时绑定 wheel 和 scroll 事件. 绑定 wheel,目的是开发 ctrl + wheel 缩放页面功能,此功能与浏览器 ...
- linux install PyMsql
# 安装pip curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py python get-pip.py # 安装PyMysql pip in ...
- CI中的数据库操作以及AR连贯操作
要使用CI中的数据库操作,首先我们应该在CI的 application/config/databass.php 文件中配置数据库信息,通常就是配置主机名,用户名,密码,数据库名,表前缀(dbprefi ...
- Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-build*解决办法
easy_install -U setuptools or pip install ipython 亲测有效
- 修复wordpress插件编辑器漏洞
具体方法,将下面的代码添加到您的配置文件 wp-config.php中: define( 'DISALLOW_FILE_EDIT', true ); 以此关闭插件编辑器功能,一切就这么简单,漏洞也就不 ...
- 【Oracle】三种方式查看SQL语句的执行计划
查看执行计划的方式有三种: EXPLAIN PLAN .V$SQL_PLAN .SQL*PLUS AUTOTRACE 1.EXPLAIN PLAN: 显示执行相应语句时可以使用的理论计划 读取执行计划 ...
- Self-hosting Sentry With Docker and Docker-compose
If a user encounters an error but you don't know about, did it happen at all? Sentry is one of the s ...
- zmodem使用方法
无论有xshell还是secureCRT连接linux的时. 默认都用一个zmodem可以帮助window和linux之间传输文件 很方便和实用的工具. 不过默认是无法使用的 需要安装lrzsz软件 ...
- vue项目中引用echarts的几种方式
准备工作: 首先我们初始化一个vue项目,执行vue init webpack echart,接着我们进入初始化的项目下.安装echarts, npm install echarts -S //或 ...