【hiho一下 第十一周】树中的最长路
【题目链接】:http://hihocoder.com/problemset/problem/1050
【题意】
【题解】
有一个经典的求树的直径的方法;
首先;
树的直径的两端的端点必然都在树的叶子上(或在根节点,考虑一条链的情况);
则
设f[i][0]表示离i这个点最远的叶子节点的距离
f[i][1]表示离i这个点第二远的叶子节点的距离
更新的话
f[x][0]=max(f[son][0]+1);
f[x][1] = max(second(f[son][0])+1);
则可以通过dp求出来所有的节点的f值,取max{f[i][0]+f[i][1]}就是它的直径了;
这里我们可以降成一维的即
ans = max(ans,f[x]+f[son]+1),f[x]=max(f[son]+1);
这里f[x]=max(f[son]+1)在ans更新完后才更新;
这个做法就等同于上面那个做法;
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e5+100;
int n,f[N],ans;
vector <int> G[N];
void dfs(int x,int fa)
{
f[x] = 0;
for (int y:G[x])
{
if (y==fa) continue;
dfs(y,x);
ans = max(ans,f[x]+f[y]+1);
f[x] = max(f[x],f[y]+1);
}
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
ios::sync_with_stdio(false),cin.tie(0);//scanf,puts,printf not use
cin >> n;
rep1(i,1,n-1)
{
int x,y;
cin >> x >> y;
G[x].pb(y),G[y].pb(x);
}
dfs(1,0);
cout << ans << endl;
return 0;
}
【hiho一下 第十一周】树中的最长路的更多相关文章
- HihoCoder第十一周:树中的最长路
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- hiho #1050 : 树中的最长路 树的直径
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- [HIHO] 1050 树中的最长路
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- hihocoder 1050 树中的最长路(动态规划,dfs搜索)
hihocoder 1050 树中的最长路(动态规划,dfs搜索) Description 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅 ...
- hihocoder#1050 : 树中的最长路(树中最长路算法 两次BFS找根节点求最长+BFS标记路径长度+bfs不容易超时,用dfs做TLE了)
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- hihoCoder 1050 树中的最长路 最详细的解题报告
题目来源:树中的最长路 解题思路:枚举每一个点作为转折点t,求出以t为根节点的子树中的‘最长路’以及与‘最长路’不重合的‘次长路’,用这两条路的长度之和去更新答案,最终的答案就是这棵树的最长路长度.只 ...
- 题解报告:hihoCoder #1050 : 树中的最长路
描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅仅可以拼凑成一棵二叉树!还可以拼凑成一棵多叉树——好吧,其实就是更为平常的树而已. 但 ...
- hihoCoder week11 树中的最长路
题目链接: https://hihocoder.com/contest/hiho11/problem/1 求树中节点对 距离最远的长度 #include <bits/stdc++.h> u ...
- HihoCoder1050 树中的最长路 树形DP第三题(找不到对象)
题意:求出的树中距离最远的两个结点之间相隔的距离. 水题一道,以前只会用路的直径来解. 代码如下: #include<cstdio> #include<cstdlib> #in ...
随机推荐
- hdu4762Cut the Cake(概率+大数操作(java)+C++高精度模板)
题目链接:点击打开链接 题目描写叙述:现有一个大蛋糕.上面随机分布了n个草莓,然后将草莓切成m块,问n个草莓全在一块蛋糕上面的概率? 解题思路:细致分析可得:C(n,1)/m^(n-1) 因为m< ...
- adb命令查看报名和查看手机分辨率
打开所要查看的应用包名: $ adb shell dumpsys activity top | head -n 10 TASK com.ss.android.article.news id=5 ACT ...
- struts1——静态ActionForm与动态ActionForm
在struts1中,我们能够使用ActionForm来获取从client端提交上来的数据.并通过action配置中的name属性.将某个ActionForm配置到某次请求应答的Action中.作为本次 ...
- org.springframework.beans.factory.config.PropertyPlaceholderConfigurer的systemPropertiesModeName属性
转自:https://www.cnblogs.com/huqianliang/p/5673701.html 使用PropertyPlaceholderConfigurer类载入外部配置 在Spring ...
- 用dom4j解析xml文件并执行增删改查操作
转自:https://www.aliyun.com/jiaocheng/1339446.html xml文件: <?xml version="1.0" encoding=&q ...
- [jzoj 6073] 河 解题报告 (DP)
interlinkage: https://jzoj.net/senior/#main/show/6073 description: solution: 考虑一条河$x$被染的效果 显然对于一条河$i ...
- 爬虫中之Requests 模块的进阶
requests进阶内容 session处理cookie proxies参数设置请求代理ip 基于线程池的数据爬取 引入 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个 ...
- [XJOI]noip45 T2 图
***图*** 解题思路:这题的原题似乎好像是NOI某年的题目,然后数据改水了 于是就可以用一些简单的最短路算法水掉. 因为他是要求max(a)+max(b)的值,所以单纯的最短路是不行的 我们可以枚 ...
- HBase编程 API入门系列之scan(客户端而言)(5)
心得,写在前面的话,也许,中间会要多次执行,连接超时,多试试就好了. package zhouls.bigdata.HbaseProject.Test1; import javax.xml.trans ...
- vue1.0.js的初步学习
vue.js是一个mvvm框架 {{.....}} 常用模板渲染方式 v-model :将对应变量的值的变化反映到input的vaule中 vue.js 的一个组件 .vue文件包含<te ...