二叉查找树BST 模板
int Search(int k,int x)
{
if(x<a[k].key && a[k].l) Search(a[k].l,x);
else if(x>a[k].key && a[k].r) Search(a[k].r,x);
else return k;
}
2.查询最小值最大值
int getmin(int k)
{
if(!a[k].l)return k;
return getmin(a[k].l);
}
int getmax(int k)
{
if(!a[k].r)return k;
return getmax(a[k].r);
}
3.输出排序(其实就是中根遍历)
void Leftorder(int k)
{
if(a[k].l)Leftorder(a[k].l);
printf("%d ",a[k].key);
if(a[k].r)Leftorder(a[k].r);
}
void InsertNode(int k,int x)
{
if(tree_size==)root=++tree_size,a[root].key=x;
else if(x<=a[k].key){
if(a[k].l)InsertNode(a[k].l,x);
else{
tree_size++;
a[tree_size].key=x;
a[tree_size].p=k;
a[k].l=tree_size;
}
}
else if(x>a[k].key){
if(a[k].r)InsertNode(a[k].r,x);
else{
tree_size++;
a[tree_size].key=x;
a[tree_size].p=k;
a[k].r=tree_size;
}
}
}
2.删除
对于删除点的操作,分下面三种情况:
(1)删的这个点没有左儿子 -> 让它的右子树代替它
(2)删的这个点没有右儿子 -> 让它的左子树代替它
(3)删的这个点子孙齐全 -> 在它的的左子树里选一个最小的(或者在右子树里找一个最大的)放在它的位置,好理解吧
}
void Treeplant(int k,int x,int y) //用子树y代替x
{
if(x==root)root=y;
else if(x==a[a[x].p].l)a[a[x].p].l=y;
else a[a[x].p].r=y;
if(a[y].key)a[y].p=a[x].p;
}
void DeleteNode(int k,int x)
{
if(!a[x].l)Treeplant(k,x,a[x].r); //情况一
else if(!a[x].r)Treeplant(k,x,a[x].l); //情况二
else{ //情况三
int y=getmin(a[x].r);
if(a[y].p!=x)
{
Treeplant(,y,a[y].r);
a[y].r=a[x].r,a[a[y].r].p=y;
}
Treeplant(,x,y);
a[y].l=a[x].l,a[a[y].l].p=y;
}
}
这点东西都跟算法导论学的 , 很好理解 ,就扯这么多了 ,立个flag明天写Splay
二叉查找树BST 模板的更多相关文章
- 二叉查找树(BST)
二叉查找树(BST):使用中序遍历可以得到一个有序的序列
- 查找系列合集-二叉查找树BST
一. 二叉树 1. 什么是二叉树? 在计算机科学中,二叉树是每个结点最多有两个子树的树结构. 通常子树被称作“左子树”(left subtree)和“右子树”(right subtree). 二叉树常 ...
- [学习笔记] 二叉查找树/BST
平衡树前传之BST 二叉查找树(\(BST\)),是一个类似于堆的数据结构, 并且,它也是平衡树的基础. 因此,让我们来了解一下二叉查找树吧. (其实本篇是作为放在平衡树前的前置知识的,但为了避免重复 ...
- 【查找结构 2】二叉查找树 [BST]
当所有的静态查找结构添加和删除一个数据的时候,整个结构都需要重建.这对于常常需要在查找过程中动态改变数据而言,是灾难性的.因此人们就必须去寻找高效的动态查找结构,我们在这讨论一个非常常用的动态查找树— ...
- 二叉查找树(BST)的实现
一.二叉树介绍 二叉查找树(Binary Search Tree,BST),又称二叉排序树,也称二叉搜索树,它或者是一颗空树,或者具有如下性质的树:若它的左子树不为空,则左子树上所有节点的值都小于根节 ...
- 3.2 符号表之二叉查找树BST
一.插入和查找 1.二叉查找树(Binary Search Tree)是一棵二叉树,并且每个结点都含有一个Comparable的键,保证每个结点的键都大于其左子树中任意结点的键而小于其右子树的任意结点 ...
- 从一段简单算法题来谈二叉查找树(BST)的基础算法
先给出一道很简单,喜闻乐见的二叉树算法题: 给出一个二叉查找树和一个目标值,如果其中有两个元素的和等于目标值则返回真,否则返回假. 例如: Input: 5 / \ 3 6 / \ \ 2 4 7 T ...
- 二叉查找树BST
每棵子树头节点的值都比各自左子树上所有节点值要大,也都比各自右子树上所有节点值要小. 二叉查找树的中序遍历序列一定是从小到大排列的. 一个节点的后继节点是指,这个节点在中序遍历序列中的下一个节点.相应 ...
- K:二叉查找树(BST)
相关介绍: 二叉查找树(英语:Binary Search Tree),也称二叉搜索树.有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tre ...
随机推荐
- BZOJ 3339 线段树
思路: 考虑离线处理 显然 l固定时 r越大 ans越大 那我们不妨按照l从小到大排序 l->l+1的时候 l到next[l]这段区间都跟a[l]取min就好了 搞颗线段树维护一下 //By S ...
- 你不知道的JavaScript博文参考书籍
you don't know js系列书籍是谷歌地图开发人员编写,内容非常好,四卷已收集齐全. 笔者打包上传到了CSDN,下载地址: http://download.csdn.net/detail/r ...
- [ Linux ] [ OS ] [ CPU ] Linux系統 OS, CPU, Memory, Disk
查看 linux 版本 及 Kernel 版本 指令: cat /etc/*-release http://benit.pixnet.net/blog/post/19390916-%E5%A6%82% ...
- EFcore笔记之创建模型
排除属性:NotMapped NotMapped:排除属性在CodeFirst的时候在数据库里不创建该属性 public class Blog { public int BlogId { get; ...
- data structure alignment(数据对齐)
概述: 数据对齐指数据在计算机内存中排放和获取的方式.包含三个方面:数据对齐(data alignment).数据结构填充(data alignment).打包(packing) 如果数据是自然对齐的 ...
- Python实现机器人语音聊天
一.前言说明 1.功能简述 登录后进入聊天界面,如果服务器都在同一个地址,则都进入同一个房间 进入/离开/发消息同一房间用户都可以看到,输入“tuling”或“chatbot”可以切换为和Tuling ...
- Uart,IIC和SPI的区别
1.UART, SPI, IIC的详解 UART.SPI.IIC是经常用到的几个数据传输标准,下面分别总结一下: UART(Universal Asynchronous Receive Transmi ...
- mac和iphone处理视频
今天在微信上面发现有视频打不开,也无法下载到相册 而到电脑上可以打开 搜了一下,发现格式不对,mp4有很多格式,有的是苹果支持不了的. 要下载一个转换器,我下载了“超级转霸”,然后把视频转成了ipho ...
- 利用艺术家的整数ID映射将标签转换为向量
<strong><span style="font-size:18px;">/*** * @author YangXin * @info Mapper选择艺 ...
- HDU 4585 Shaolin(STL map)
Shaolin Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit cid= ...