1578. 次小生成树初级练习题

☆   输入文件:mst2.in   输出文件:mst2.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

求严格次小生成树

【输入格式】

第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。

【输出格式】

包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)

【样例输入】

5 6

1 2 1

1 3 2

2 4 3

3 5 4

3 4 3

4 5 6

【样例输出】

11

【提示】

数据中无向图无自环; 50% 的数据N≤2 000 M≤3 000; 80% 的数据N≤50 000 M≤100 000; 100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。

【来源】

bzoj。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct nond{
int x,y,z;
}edge[];
int T,N,M,x,y,z,fa[],num,ans[];
int tot,bns,k,answer=0x7f7f7f7f;
int cmp(nond aa,nond bb){
return aa.z<bb.z;
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int main(){
freopen("mst2.in","r",stdin);
freopen("mst2.out","w",stdout);
cin>>N>>M;
for(int i=;i<=M;i++){
cin>>x>>y>>z;
edge[i].x=x;
edge[i].y=y;
edge[i].z=z;
}
sort(edge+,edge++M,cmp);
for(int i=;i<=N;i++) fa[i]=i;
for(int i=;i<=M;i++){
int dx=find(edge[i].x);
int dy=find(edge[i].y);
if(dx!=dy){
fa[dx]=dy;
tot++;
ans[tot]=i;
bns+=edge[i].z;
}
if(tot==N-) break;
}
for(int i=;i<=tot;i++){
k=;num=;
for(int j=;j<=N;j++) fa[j]=j;
sort(edge+,edge++M,cmp);
for(int j=;j<=M;j++){
if(j==ans[i]) continue;
int dx=find(edge[j].x);
int dy=find(edge[j].y);
if(dx!=dy){
fa[dx]=dy;
num++;
k+=edge[j].z;
}
if(num==N-) break;
}
if(num==N-&&k!=bns) answer=min(k,answer);
}
cout<<answer;
}

cogs P1578【模板】 次小生成树初级练习题的更多相关文章

  1. COGS——T 1578. 次小生成树初级练习题

    http://www.cogs.pro/cogs/problem/problem.php?pid=1578 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 ...

  2. cogs——1578. 次小生成树初级练习题

    1578. 次小生成树初级练习题 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式 ...

  3. COGS 1578. 次小生成树初级练习题

    ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式] 第一行包含两个整数N 和M,表 ...

  4. 洛谷.4180.[模板]次小生成树Tree(Kruskal LCA 倍增)

    题目链接 构建完MST后,枚举非树边(u,v,w),在树上u->v的路径中找一条权值最大的边(权为maxn),替换掉它 这样在 w=maxn 时显然不能满足严格次小.但是这个w可以替换掉树上严格 ...

  5. P4180 【模板】严格次小生成树[BJWC2010]

    P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删 ...

  6. 【洛谷】4180:【模板】严格次小生成树[BJWC2010]【链剖】【线段树维护最大、严格次大值】

    P4180 [模板]严格次小生成树[BJWC2010] 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说, ...

  7. POJ -1679(次小生成树)模板

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:34617   Accepted: 12637 D ...

  8. 「LuoguP4180」 【模板】严格次小生成树[BJWC2010](倍增 LCA Kruscal

    题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得 ...

  9. 洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】

    严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点 ...

随机推荐

  1. 容器配置https

    生成秘钥库 通过jdk的keytool工具生成秘钥库 keytool -genkeypair -alias "localhost" -keyalg "RSA" ...

  2. python第三次作业——叶耀宗

    作业1 import random#引入随机数模块xing=["小白","小黄","小王","小陈","小绿& ...

  3. 一个Web报表项目的性能分析和优化实践(三) :提高Web应用服务器Tomcat的内存配置,并确认配置正确

    摘要 上一篇,一个Web报表项目的性能分析和优化实践(一):小试牛刀,统一显示SQL语句执行时间 ,讲述了项目优化的整体背景,重点讲述了统一显示了Web项目SQL语句的执行时间. 本篇,将重点介绍提高 ...

  4. 安卓Gallery配合ImageSwitcher不显示图片

    Gallary装的是缩略图(thumb),ImageSwitcher装的是大图. 不显示图片的一个可能原因是gallery没设置代理器,另一个原因是没使用相对布局. GalleryActivity.j ...

  5. openVswitch(OVS)源码分析之工作流程(哈希桶结构体的解释)

    这篇blog是专门解决前篇openVswitch(OVS)源码分析之工作流程(哈希桶结构体的疑惑)中提到的哈希桶结构flex_array结构体成员变量含义的问题. 引用下前篇blog中分析讨论得到的f ...

  6. BZOJ1045: [HAOI2008]糖果传递&BZOJ1465: 糖果传递&BZOJ3293: [Cqoi2011]分金币

    [传送门:BZOJ1045&BZOJ1465&BZOJ3293] 简要题意: 给出n个数,每个数每次可以-1使得左边或者右边的数+1,代价为1,求出使得这n个数相等的最小代价 题解: ...

  7. 81.node.js前端html时页面格式错乱解决办法

    var http = require("http"); var url = require("url"); var fs = require("fs& ...

  8. ASE加、解密

    AES已经变成目前对称加密中最流行算法之一:AES可以使用128.192.和256位密钥,并且用128位分组加密和解密数据. /** * 加密 * * @param content 需要加密的内容 * ...

  9. 分析一下jquery中的ajax操作

    在web前端开发中,ajax是很重要的一项技术,用原生写起来很是麻烦,需要一大堆js代码,而到了jq里就被精简了许多,一起来看看: jquery中的ajax分为三种方式: 1.$.get(),get方 ...

  10. 互联网金融研究组:P2P借贷平台:性质、风险与监管(上)

    互联网金融研究组(): P2P借贷平台:性质.风险与监管(上) 目 录 一.性质与合法性 1.  P2P网络借贷 1.1  概念重新界定 1.2  发展概况与特点 2.  延伸模式及其合法性浅析 2. ...