写的不错。

http://www.cnblogs.com/CheeseZH/p/5264465.html

IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

一、管道

1、特点:

  1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

  2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

  3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

2、原型:

1 #include <unistd.h>
2 int pipe(int fd[2]); // 返回值:若成功返回0,失败返回-1

当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

3、例子

单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

#include<stdio.h>
#include<unistd.h> int main()
{
int fd[]; // 两个文件描述符
pid_t pid;
char buff[]; if(pipe(fd) < ) // 创建管道
printf("Create Pipe Error!\n"); if((pid = fork()) < ) // 创建子进程
printf("Fork Error!\n");
else if(pid > ) // 父进程
{
close(fd[]); // 关闭读端
write(fd[], "hello world\n", );
}
else
{
close(fd[]); // 关闭写端
read(fd[], buff, );
printf("%s", buff);
} return ;
}

二、FIFO

FIFO,也称为命名管道,它是一种文件类型。

1、特点

  1. FIFO可以在无关的进程之间交换数据,与无名管道不同。

  2. FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

2、原型

1 #include <sys/stat.h>
2 // 返回值:成功返回0,出错返回-1
3 int mkfifo(const char *pathname, mode_t mode);

其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

当打开一个FIFO是 O_NONBLOCK 产生的影响如下:

1若没有这个标志,以只读方式打开的FIFO要阻塞到其他的某个程序以写打开这个FIFO。同样以只写方式打开的FIFO要阻塞到其他某个进程以读方式打开该FIFO。
2若指定了这个标志,则以只读方式打开会立刻返回而不阻塞(不是出错返回)。而以只写方式打开,若之前没有进程以读方式打开这个FIFO则立刻出错返回。

3、例子

FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:

#include<stdio.h>
#include<stdlib.h> // exit
#include<fcntl.h> // O_WRONLY
#include<sys/stat.h>
#include<time.h> // time int main()
{
int fd;
int n, i;
char buf[];
time_t tp; printf("I am %d process.\n", getpid()); // 说明进程ID if((fd = open("fifo1", O_WRONLY)) < ) // 以写打开一个FIFO
{
perror("Open FIFO Failed");
exit();
} for(i=; i<; ++i)
{
time(&tp); // 取系统当前时间
n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp));
printf("Send message: %s", buf); // 打印
if(write(fd, buf, n+) < ) // 写入到FIFO中
{
perror("Write FIFO Failed");
close(fd);
exit();
}
sleep(); // 休眠1秒
} close(fd); // 关闭FIFO文件
return ;
}

读:

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<fcntl.h>
#include<sys/stat.h> int main()
{
int fd;
int len;
char buf[]; if(mkfifo("fifo1", ) < && errno!=EEXIST) // 创建FIFO管道
perror("Create FIFO Failed"); if((fd = open("fifo1", O_RDONLY)) < ) // 以读打开FIFO
{
perror("Open FIFO Failed");
exit();
} while((len = read(fd, buf, )) > ) // 读取FIFO管道
printf("Read message: %s", buf); close(fd); // 关闭FIFO文件
return ;
}

三、消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

1、特点

  1. 消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

  2. 消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

  3. 消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

2、原型

1 #include <sys/msg.h>
2 // 创建或打开消息队列:成功返回队列ID,失败返回-1
3 int msgget(key_t key, int flag);
4 // 添加消息:成功返回0,失败返回-1
5 int msgsnd(int msqid, const void *ptr, size_t size, int flag);
6 // 读取消息:成功返回消息数据的长度,失败返回-1
7 int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);
8 // 控制消息队列:成功返回0,失败返回-1
9 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

在以下两种情况下,msgget将创建一个新的消息队列:

  • 如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。
  • key参数为IPC_PRIVATE

函数msgrcv在读取消息队列时,type参数有下面几种情况:

  • type == 0,返回队列中的第一个消息;
  • type > 0,返回队列中消息类型为 type 的第一个消息;
  • type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。

3、例子

下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。

#include <stdio.h>
#include <stdlib.h>
#include <sys/msg.h> // 用于创建一个唯一的key
#define MSG_FILE "/etc/passwd" // 消息结构
struct msg_form {
long mtype;
char mtext[];
}; int main()
{
int msqid;
key_t key;
struct msg_form msg; // 获取key值
if((key = ftok(MSG_FILE,'z')) < )
{
perror("ftok error");
exit();
} // 打印key值
printf("Message Queue - Server key is: %d.\n", key); // 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|)) == -)
{
perror("msgget error");
exit();
} // 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid()); // 循环读取消息
for(;;)
{
msgrcv(msqid, &msg, , , );// 返回类型为888的第一个消息
printf("Server: receive msg.mtext is: %s.\n", msg.mtext);
printf("Server: receive msg.mtype is: %d.\n", msg.mtype); msg.mtype = ; // 客户端接收的消息类型
sprintf(msg.mtext, "hello, I'm server %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), );
}
return ;
}
#include <stdio.h>
#include <stdlib.h>
#include <sys/msg.h> // 用于创建一个唯一的key
#define MSG_FILE "/etc/passwd" // 消息结构
struct msg_form {
long mtype;
char mtext[];
}; int main()
{
int msqid;
key_t key;
struct msg_form msg; // 获取key值
if ((key = ftok(MSG_FILE, 'z')) < )
{
perror("ftok error");
exit();
} // 打印key值
printf("Message Queue - Client key is: %d.\n", key); // 打开消息队列
if ((msqid = msgget(key, IPC_CREAT|)) == -)
{
perror("msgget error");
exit();
} // 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid()); // 添加消息,类型为888
msg.mtype = ;
sprintf(msg.mtext, "hello, I'm client %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), ); // 读取类型为777的消息
msgrcv(msqid, &msg, , , );
printf("Client: receive msg.mtext is: %s.\n", msg.mtext);
printf("Client: receive msg.mtype is: %d.\n", msg.mtype);
return ;
}

四、信号量

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

1、特点

  1. 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存

  2. 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

  3. 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

  4. 支持信号量组。

2、原型

最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

1 #include <sys/sem.h>
2 // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
3 int semget(key_t key, int num_sems, int sem_flags);
4 // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
5 int semop(int semid, struct sembuf semoparray[], size_t numops);
6 // 控制信号量的相关信息
7 int semctl(int semid, int sem_num, int cmd, ...);

semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

semop函数中,sembuf结构的定义如下:

1 struct sembuf
2 {
3 short sem_num; // 信号量组中对应的序号,0~sem_nums-1
4 short sem_op; // 信号量值在一次操作中的改变量
5 short sem_flg; // IPC_NOWAIT, SEM_UNDO
6 }

其中 sem_op 是一次操作中的信号量的改变量:

  • sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

  • sem_op < 0,请求 sem_op 的绝对值的资源。

    • 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
    • 当相应的资源数不能满足请求时,这个操作与sem_flg有关。
      • sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN
      • sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
        1. 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
        2. 此信号量被删除,函数smeop出错返回EIDRM;
        3. 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
  • sem_op == 0,进程阻塞直到信号量的相应值为0:

    • 当信号量已经为0,函数立即返回。
    • 如果信号量的值不为0,则依据sem_flg决定函数动作:
      • sem_flg指定IPC_NOWAIT,则出错返回EAGAIN
      • sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
        1. 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
        2. 此信号量被删除,函数smeop出错返回EIDRM;
        3. 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

semctl函数中的命令有多种,这里就说两个常用的:

  • SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。
  • IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

3、例子

#include<stdio.h>
#include<stdlib.h>
#include<sys/sem.h> // 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
}; // 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, , SETVAL, tmp) == -)
{
perror("Init Semaphore Error");
return -;
}
return ;
} // P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = -; /*P操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("P operation Error");
return -;
}
return ;
} // V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = ; /*V操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("V operation Error");
return -;
}
return ;
} // 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, , IPC_RMID, tmp) == -)
{
perror("Delete Semaphore Error");
return -;
}
return ;
} int main()
{
int sem_id; // 信号量集ID
key_t key;
pid_t pid; // 获取key值
if((key = ftok(".", 'z')) < )
{
perror("ftok error");
exit();
} // 创建信号量集,其中只有一个信号量
if((sem_id = semget(key, , IPC_CREAT|)) == -)
{
perror("semget error");
exit();
} // 初始化:初值设为0资源被占用
init_sem(sem_id, ); if((pid = fork()) == -)
perror("Fork Error");
else if(pid == ) /*子进程*/
{
sleep();
printf("Process child: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
}
else /*父进程*/
{
sem_p(sem_id); /*等待资源*/
printf("Process father: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
del_sem(sem_id); /*删除信号量集*/
}
return ;
}

上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。

五、共享内存

共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

1、特点

  1. 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

  2. 因为多个进程可以同时操作,所以需要进行同步。

  3. 信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

2、原型

1 #include <sys/shm.h>
2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
3 int shmget(key_t key, size_t size, int flag);
4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
5 void *shmat(int shm_id, const void *addr, int flag);
6 // 断开与共享内存的连接:成功返回0,失败返回-1
7 int shmdt(void *addr);
8 // 控制共享内存的相关信息:成功返回0,失败返回-1
9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

3、例子

下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

  • 共享内存用来传递数据;
  • 信号量用来同步;
  • 消息队列用来 在客户端修改了共享内存后 通知服务器读取。

server.c

#include<stdio.h>
#include<stdlib.h>
#include<sys/shm.h> // shared memory
#include<sys/sem.h> // semaphore
#include<sys/msg.h> // message queue
#include<string.h> // memcpy // 消息队列结构
struct msg_form {
long mtype;
char mtext;
}; // 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
}; // 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, , SETVAL, tmp) == -)
{
perror("Init Semaphore Error");
return -;
}
return ;
} // P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = -; /*P操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("P operation Error");
return -;
}
return ;
} // V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = ; /*V操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("V operation Error");
return -;
}
return ;
} // 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, , IPC_RMID, tmp) == -)
{
perror("Delete Semaphore Error");
return -;
}
return ;
} // 创建一个信号量集
int creat_sem(key_t key)
{
int sem_id;
if((sem_id = semget(key, , IPC_CREAT|)) == -)
{
perror("semget error");
exit(-);
}
init_sem(sem_id, ); /*初值设为1资源未占用*/
return sem_id;
} int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
char data[] = "this is server";
struct shmid_ds buf1; /*用于删除共享内存*/
struct msqid_ds buf2; /*用于删除消息队列*/
struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/ // 获取key值
if((key = ftok(".", 'z')) < )
{
perror("ftok error");
exit();
} // 创建共享内存
if((shmid = shmget(key, , IPC_CREAT|)) == -)
{
perror("Create Shared Memory Error");
exit();
} // 连接共享内存
shm = (char*)shmat(shmid, , );
if((int)shm == -)
{
perror("Attach Shared Memory Error");
exit();
} // 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|)) == -)
{
perror("msgget error");
exit();
} // 创建信号量
semid = creat_sem(key); // 读数据
while()
{
msgrcv(msqid, &msg, , , ); /*读取类型为888的消息*/
if(msg.mtext == 'q') /*quit - 跳出循环*/
break;
if(msg.mtext == 'r') /*read - 读共享内存*/
{
sem_p(semid);
printf("%s\n",shm);
sem_v(semid);
}
} // 断开连接
shmdt(shm); /*删除共享内存、消息队列、信号量*/
shmctl(shmid, IPC_RMID, &buf1);
msgctl(msqid, IPC_RMID, &buf2);
del_sem(semid);
return ;
}

client.c

#include<stdio.h>
#include<stdlib.h>
#include<sys/shm.h> // shared memory
#include<sys/sem.h> // semaphore
#include<sys/msg.h> // message queue
#include<string.h> // memcpy // 消息队列结构
struct msg_form {
long mtype;
char mtext;
}; // 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
}; // P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = -; /*P操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("P operation Error");
return -;
}
return ;
} // V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = ; /*序号*/
sbuf.sem_op = ; /*V操作*/
sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, ) == -)
{
perror("V operation Error");
return -;
}
return ;
} int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
struct msg_form msg;
int flag = ; /*while循环条件*/ // 获取key值
if((key = ftok(".", 'z')) < )
{
perror("ftok error");
exit();
} // 获取共享内存
if((shmid = shmget(key, , )) == -)
{
perror("shmget error");
exit();
} // 连接共享内存
shm = (char*)shmat(shmid, , );
if((int)shm == -)
{
perror("Attach Shared Memory Error");
exit();
} // 创建消息队列
if ((msqid = msgget(key, )) == -)
{
perror("msgget error");
exit();
} // 获取信号量
if((semid = semget(key, , )) == -)
{
perror("semget error");
exit();
} // 写数据
printf("***************************************\n");
printf("* IPC *\n");
printf("* Input r to send data to server. *\n");
printf("* Input q to quit. *\n");
printf("***************************************\n"); while(flag)
{
char c;
printf("Please input command: ");
scanf("%c", &c);
switch(c)
{
case 'r':
printf("Data to send: ");
sem_p(semid); /*访问资源*/
scanf("%s", shm);
sem_v(semid); /*释放资源*/
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
msg.mtype = ;
msg.mtext = 'r'; /*发送消息通知服务器读数据*/
msgsnd(msqid, &msg, sizeof(msg.mtext), );
break;
case 'q':
msg.mtype = ;
msg.mtext = 'q';
msgsnd(msqid, &msg, sizeof(msg.mtext), );
flag = ;
break;
default:
printf("Wrong input!\n");
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
}
} // 断开连接
shmdt(shm); return ;
}

注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

1 while((c=getchar())!='\n' && c!=EOF);

参考资料:http://songlee24.github.io/2015/04/21/linux-IPC/

IPC总结学习的更多相关文章

  1. linux IPC机制学习博客

    要求 研究Linux下IPC机制:原理,优缺点,每种机制至少给一个示例,提交研究博客的链接 - 共享内存 - 管道 - FIFO - 信号 - 消息队列 研究博客 管道(PIPE) 管道(PIPE): ...

  2. linux IPC简单学习

    Posix和system v区别 所谓的IPC(进程间通信)指的是消息队列,共享内存,信号量3种机制合并起来,当然,这是个狭义的概念,只包含这三种.IPC又可以分为system v进程间通信和posi ...

  3. 【APUE】Chapter16 Network IPC: Sockets & makefile写法学习

    16.1 Introduction Chapter15讲的是同一个machine之间不同进程的通信,这一章内容是不同machine之间通过network通信,切入点是socket. 16.2 Sock ...

  4. Linux进程间通信IPC学习笔记之同步二(SVR4 信号量)

    Linux进程间通信IPC学习笔记之同步二(SVR4 信号量)

  5. Linux进程间通信IPC学习笔记之同步二(Posix 信号量)

    Linux进程间通信IPC学习笔记之同步二(Posix 信号量)

  6. Linux进程间通信IPC学习笔记之消息队列(SVR4)

    Linux进程间通信IPC学习笔记之消息队列(SVR4)

  7. Linux进程间通信IPC学习笔记之有名管道

    基础知识: 有名管道,FIFO先进先出,它是一个单向(半双工)的数据流,不同于管道的是:是最初的Unix IPC形式,可追溯到1973年的Unix第3版.使用其应注意两点: 1)有一个与路径名关联的名 ...

  8. Linux进程间通信IPC学习笔记之管道

    基础知识: 管道是最初的Unix IPC形式,可追溯到1973年的Unix第3版.使用其应注意两点: 1)没有名字: 2)用于共同祖先间的进程通信: 3)读写操作用read和write函数 #incl ...

  9. Linux学习笔记29——IPC状态命令

    一 IPC IPC是进程间通讯,在前面,我们相继学习了进程间通讯机制有信号量,内存共享,消息队列.状态命令(ipcs)和删除命令(ipcrm)提供了一种检查和清理IPC机制的方法. 二 状态命令 1 ...

随机推荐

  1. 【BZOJ 3942】 Censoring

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3942 [算法] 栈 + KMP [代码] #include<bits/stdc ...

  2. 【BZOJ 2252】 矩阵距离

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2252 [算法] 将所有是”1“的点入队,然后广度优先搜索,即可 [代码] #incl ...

  3. runC爆严重安全漏洞,主机可被攻击!使用容器的快打补丁

    runC 是 Docker,Kubernetes 等依赖容器的应用程序的底层容器运行时.此次爆出的严重安全漏洞可使攻击者以 root 身份在主机上执行任何命令. 容器的安全性一直是容器技术的一个短板. ...

  4. Spell checker(串)

    http://poj.org/problem?id=1035 题意:给定一个单词判断其是否在字典中,若存在输出"%s is correct",否则判断该单词删掉一个字母,或增加一个 ...

  5. DIV+CSS设计时浏览器兼容性

          近期用Div+css做了个企业网站,在浏览器中测试的时候确发现在IE7中显示正常的页面,在ie6中非常混乱,当时第一感觉就想到了兼容问题,可是百思不得其解应该从哪下手,经过一两天的查资料, ...

  6. 使用protobuf传递网络消息

    1.获取protobuf及相关依赖 新建install_protobuf.bat脚本,粘贴以下代码 ::参考文章 https://github.com/google/protobuf/blob/mas ...

  7. C# Area 双重路由如何写

    在WebApi项目里面 一般除了接口, 还有管理端...一些乱七八糟的,你想展示的东西, 一种做法是分开写: 比如管理后台一个项目, 然后接口一个, 然后页面一个, 其实这样做也可以,但是这么做, 无 ...

  8. (转)JavaScript深入之从原型到原型链

    构造函数创建对象 我们先使用构造函数创建一个对象: function Person() { } var person = new Person(); person.name = 'Kevin'; co ...

  9. OPPO R11 R11plus系列 解锁BootLoader ROOT Xposed 你的手机你做主

    首先准备好所有要使用到的文件 下载链接:https://share.weiyun.com/5WgQHtx 步骤1. 首先安装驱动 解压后执行 Install.bat 部分电脑需要禁用驱动程序签名才可以 ...

  10. 相机标定:PNP基于单应面解决多点透视问题

              利用二维视野内的图像,求出三维图像在场景中的位姿,这是一个三维透视投影的反向求解问题.常用方法是PNP方法,需要已知三维点集的原始模型. 本文做了大量修改,如有不适,请移步原文:  ...