毫无思路,Orz了一下大佬的思路%%%

大概就是因为k比n小的多,我们知道约瑟夫环有个公式是fn=(fn-1+k) mod n

可以改一下,改成fn+p=(fn+pk) mod (n+p)

但是这样的话就不对了,因为有mod,模数是改变的。

pk肯定大于p。然后我们可以让这个模数等价,就是mod n和mod n+1....是一样的,就可以让fn+pk≤n+p

这样的话解一下不等式,p≤(n-lastans-k)/(k-1)

(会不会有锅啊。。。害怕

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
long long n,k,ans,tp;
int main (){
cin>>n>>k;
for(long long i=;i<=n;i+=tp+1ll) {
tp=(i-ans-k)/(k-1ll);
if(i+tp>=n) tp=n-i;
//if(!tp) break;
ans=(ans+k*(tp+1ll))%(i+tp);
}
cout<<++ans;
}

1074

[51nod1074] 约瑟夫问题 V2的更多相关文章

  1. 51nod 1074 约瑟夫环 V2

    N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号. 例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号. ...

  2. 如何搭建自己的SPRING INITIALIZR server

    这两天在慕课学Spring boot ,用idea通过spring initializr新建项目 即使用代理连不上.无奈. 参考了 GitHub - spring-io/initializr: A w ...

  3. [51nod1074]约瑟夫环V2

    N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号. 例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号. ...

  4. Atitit. 破解  拦截 绕过 网站 手机 短信 验证码  方式 v2 attilax 总结

    Atitit. 破解  拦截 绕过 网站 手机 短信 验证码  方式 v2 attilax 总结 1. 验证码的前世今生11.1. 第一代验证码 图片验证码11.2. 第二代验证码  用户操作 ,比如 ...

  5. [Android]Android端ORM框架——RapidORM(v2.1)

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/6020412.html [Android]Android端ORM ...

  6. [Android]Android端ORM框架——RapidORM(v2.0)

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/5626716.html [Android]Android端ORM ...

  7. JuCheap V2.0响应式后台管理系统模板正式发布beta版本

    JuCheap V1.* 查看地址: http://blog.csdn.net/allenwdj/article/details/49155339 经过半年的努力,JuCheap后台通用响应式管理后台 ...

  8. Atitit. 项目文档目录大纲 总集合  v2

    Atitit. 项目文档目录大纲 总集合  v2 -----Atitti.原有项目源码的架构,框架,配置与环境说明 v3 q511 -----Atitit.开发环境 与 工具 以及技术框架 以及 注意 ...

  9. 约瑟夫问题(java实现)

    方法一.自定义的链表实现 package com.code.yuesefu; public class YueSeFuList { public static void main(String[] a ...

随机推荐

  1. [bzoj3209]花神的数论题_数位dp

    花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...

  2. POJ 2375

    BFS+强连通.输出max(缩点后出度为0的点数,缩点后入度为0的点数). #include <cstdio> #include <iostream> #include < ...

  3. 彻底解决Android GPS没法定位这一顽固问题

    大家去网上搜索Android定位location为null没法定位问题.预计有一大堆文章介绍怎样来解决.可是最后大家发现基本没用. 本文将从Android定位实现原理来深入分析没法定位原因并提出真正的 ...

  4. javascript学习笔记(一)-廖雪峰教程

    一. 基础 1.for in,for of和forEach 遍历的是对象的属性,因为数组也是对象,其内部的元素的索引就是其属性值.用该方式遍历数组就是获取了数组中的每一个元素的索引值(从0開始). 而 ...

  5. hadoop权威指南(第四版)要点翻译(5)——Chapter 3. The HDFS(5)

    5) The Java Interface a) Reading Data from a Hadoop URL. 使用hadoop URL来读取数据 b) Although we focus main ...

  6. xcode Automatic signing is unable to resolve an issue with the "ShowCar-IOS" target's entitlements

    1.https://stackoverflow.com/questions/37806538/code-signing-is-required-for-product-type-application ...

  7. GIS中mybatis_CMEU的配置方法

    基本常用功能预览: 生成实体类(可以自定义:get/set,有参无参构造方法,自定义类型与属性,序列化等); 生成dao层接口(查询全部信息,通过ID查询信息,插入全部属性,插入不为空的属性,通过ID ...

  8. ubuntu终端白屏的解决方法

    昨天突发奇想的想为teminal设置一个背景, 这样.... 不过过了一会就高兴不起来了,,,,终端白屏!好吧,现在我页没办法彻底解决, 不过暂时的一个方法是可以把首选项->背景->背景图 ...

  9. 线性回归模型之LinearRegression和SGDRegressor

    用美国波士顿的房价数据来介绍如何使用LR和SGDR模型进行预测 # 从sklearn.datasets导入波士顿房价数据读取器. from sklearn.datasets import load_b ...

  10. c# xml操作总结

    一前言 先来了解下操作XML所涉及到的几个类及之间的关系  如果大家发现少写了一些常用的方法,麻烦在评论中指出,我一定会补上的!谢谢大家 * 1 XMLElement 主要是针对节点的一些属性进行操作 ...