题面:BZOJ传送门

题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数

考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数

汉堡:$1+x^{2}+x^{4}+x^{4}...=\frac{1}{1-x^{2}}$

可乐:$1+x$

鸡腿:$1+x+x^{2}$

蜜桃:$x+x^{3}+x^{5}+x^{7}...=\frac{x}{1-x^{2}}$

鸡块:$1+x^{4}+x^{8}+x^{12}..=\frac{1}{1-x^{3}}$

包子:$1+x+x^{2}+x^{3}=(1+x)(1+x^{2})$

土豆:$1+x$

面包:$1+x^{3}+x^{6}+x^{9}...=\frac{1}{1-x^{3}}$

数据范围非常大,直接上生成函数会炸,而且模数也不支持$NTT$

把这些多项式乘起来,化简可得$f(x)=\frac{x}{(1-x)^{4}}$

一种做法是求导,再代入泰勒展开,然而我太弱了并没有推明白式子

$f(x)=\frac{x}{(1-x)^{4}}=x(\frac{1}{(1-x)})^{4}$

考虑$\frac{1}{1-x}$的本质,就是$1+x+x^{2}+x^{3}...$

而它的四次方就是$1+4x+10x^{2}+20x^{3}..$

即$C_{3}^{0}+C_{4}^{1}x+C_{5}^{2}x^{2}+C_{6}^{3}x^{3}...$

这不就是个躺着的杨辉三角么,那么第$n$项的结果就是$C_{n+3}^{n}$

然而还有一项$x$没算进去,相当于把整个多项式右移一位,即答案左移一位

最终答案变成了$C_{n+2}^{n-1}$

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define dd double
#define N1 1010
using namespace std; const int mod=; int gint()
{
int ret=,fh=; char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
} void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){ x=; y=; return; }
exgcd(b,a%b,x,y); ll t=x; x=y; y=t-a/b*y;
}
char str[N1];
int a[N1],n; int main()
{
scanf("%s",str+);
int ret=,i; n=strlen(str+);
for(i=;i<=n;i++) ret=(ret*+str[i]-'')%mod;
ll inv,invy; ret=1ll*(ret+)*(ret+)%mod*(ret)%mod;
exgcd(,mod,inv,invy); inv=(inv%mod+mod)%mod; ret=1ll*ret*inv%mod;
exgcd(,mod,inv,invy); inv=(inv%mod+mod)%mod; ret=1ll*ret*inv%mod;
printf("%d\n",ret);
return ;
}

BZOJ 3028 食物 (生成函数+数学题)的更多相关文章

  1. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  2. BZOJ 3028 食物 生成函数

    Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...

  3. bzoj 3028 食物——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...

  4. bzoj 3028 食物 —— 生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...

  5. BZOJ 3028 食物 ——生成函数

    把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...

  6. bzoj 3028: 食物 生成函数_麦克劳林展开

    不管怎么求似乎都不太好求,我们试试生成函数.这个东西好神奇.生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数. 有时候,我们会将函数按等比数列求和公式进行压 ...

  7. bzoj 3028: 食物 -- 母函数

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...

  8. bzoj 3028: 食物【生成函数】

    承德汉堡:\( 1+x^2+x^4+...=\frac{1}{1-x^2} \) 可乐:\(1+x \) 鸡腿:\( 1+x+x^2=\frac{x^3-1}{x-1} \) 蜜桃多:\( x+x^3 ...

  9. BZOJ 3028: 食物

    \(\color{#0066ff}{ 题目描述 }\) 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮 ...

随机推荐

  1. ExtJs之Ext.ElementLoader.load

    稍微书上代码不适合. var btns = Ext.select('input'); 需要更改为: var btns = Ext.select('input', true); 不然报错: [E] Ex ...

  2. LInux下实时网络流量监控工具nload教程

    https://jingyan.baidu.com/article/642c9d340cbef0644a46f72a.html http://blog.csdn.net/u014171641/arti ...

  3. spring-cloud-feign 使用@RequetParam报错QueryMap parameter must be a Map: class java.lang.String

    这里使用spring-cloud-start-feign: 1.2.2 REALEASE版本,依赖管理器版本是 Camden.SR2 出错的原因是@RequestParam的value为empty时, ...

  4. PHP扩展开发-测验成功

    原文:http://kimi.it/496.html http://blog.csdn.net/u011957758/article/details/72234075 ---------------- ...

  5. HDU 1198 Farm Irrigation (并查集优化,构图)

    本题和HDU畅通project类似.仅仅只是畅通project给出了数的连通关系, 而此题须要自己推断连通关系,即两个水管能否够连接到一起,也是本题的难点所在. 记录状态.不断combine(),注意 ...

  6. linux下安装rar解压包

    直接解压时出现的问题如下 原因:使用rar命令需要安装WinRAR 1.在本机下载好解压,然后将解压包拖到linux上 2.进行安装,在rar目录想直接make

  7. SecureCRT图形界面(通过设置调用Xmanager - Passive程序)

    首先,在server进行设置 假设server是图形化界面启动的,xhost +命令能够不用运行 [root@test ~]# xhost + xhost:  unable to open displ ...

  8. 消息推送之百度云推送Android集成与用法

    这两天因为项目须要.研究了一下百度云推送,本来这事没什么多大工作量的,但注冊百度开发人员账户创建应用令我蛋疼菊紧了好一阵,这些东西做了对技术没啥提升,不做又不行,必经之路. 好在我耗费了N多个毫毫秒秒 ...

  9. hdoj--3488--Tour(KM)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submi ...

  10. Node.js:常用工具

    ylbtech-Node.js:常用工具 1.返回顶部 1. Node.js 常用工具 util 是一个Node.js 核心模块,提供常用函数的集合,用于弥补核心JavaScript 的功能 过于精简 ...