hiho1509 异或排序
题目大意:
给定一个长度为 n 的非负整数序列 a[1..n]
你需要求有多少个非负整数 S 满足以下两个条件:
(1).0 ≤ S < 260
(2).对于所有 1 ≤ i < n ,有 (a[i] xor S) ≤ (a[i+1] xor S)
1 ≤ n ≤ 50
0 ≤ a[i] < 260
-------------------------------------------------------------------------------------
开始看到题感觉无从下手,分析了一下才发现是到水题。
维护一个60位的标记数组,用来表示S的第i位可以放置的数(11为置01都可,01为只可置0,10为只可置1,00为都不能放)。初始状态为11。
开始时n个数在一个组内,要满足条件(2),n个数的最高位必须满足
1)全部为0或1;这时候该位可以放0或者1。
2)前几个数最高位为0,后面的数为1.(或者反过来),但不会出现01交替出现的情况;这时候该位只能放0或者1.
对于情况1)仍把改组扔到次高位处理。
对于情况2)可以把该组分成两组扔到次高位处理。
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #define MAX(a,b) ((a)>=(b)?(a):(b))
#define MIN(a,b) ((a)<=(b)?(a):(b))
#define OO 0x0fffffff
using namespace std;
typedef long long LL;
const int N = ;
int digits[N][N];
void getDigits(int id,LL data){
for(int i=;i<;i++){
digits[id][i]=(data&1L);
data>>=;
}
}
int choice[N];
int n;
LL data;
struct Node{
int level;
int spos,epos;
int sdigit,scnt;
Node(int tlevel,int tspos,int tepos){
level = tlevel;
spos = tspos;
epos = tepos;
}
Node(){}
int length(){
return epos-spos+;
}
};
int main(){
cin>>n;
for(int i=;i<n;i++) {
cin>>data;
getDigits(i,data);
}
for(int i=;i<;i++) choice[i] = ; Node head(,,n-);
queue<Node> q;
q.push(head);
while(!q.empty()){
Node cur = q.front(); q.pop();
cur.sdigit = digits[cur.spos][cur.level];
cur.scnt = ;
for(int r=cur.spos+;r<=cur.epos;r++){
if(digits[r][cur.level]==digits[r-][cur.level])
cur.scnt++;
else break;
}
if(cur.scnt==cur.length()){
choice[cur.level]&=;
if(cur.level)
q.push(Node(cur.level-,cur.spos,cur.epos));
}
else {
choice[cur.level]&=(cur.sdigit+);
if(cur.level){
q.push(Node(cur.level-,cur.spos,cur.spos+cur.scnt-));
q.push(Node(cur.level-,cur.spos+cur.scnt,cur.epos));
}
}
}
LL ans = ;
for(int i=;i<;i++){
if(!choice[i]) {
ans=;
break;
}
if(choice[i]==) ans*=;
}
printf("%lld\n",ans);
return ;
}
hiho1509 异或排序的更多相关文章
- hihoCoder挑战赛28 题目1 : 异或排序
题目1 : 异或排序 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: ...
- [hihocoder1509][异或排序]
hihocoder1509 思路 对于每两个数,从二进制的高位到低位考虑,发现,若前面一个的当前位是1,后面一个的当前位置是0,那么s的当前位置必须是1.反之,若前面是0,后面是1,那么s的当前位置必 ...
- hihoCoder.1509.异或排序(位运算 思路)
题目链接 \(Description\) 给定长为\(n\)的序列\(A\).求有多少\(S\),满足\(0\leq S<2^{60}\),且对于所有\(i\in[1,n-1]\),\(a[i] ...
- hihocoder 1509 异或排序
题面在这里! 考虑前后两个数 x,y,可以发现S只有在(x xor y)的最高有1位上的取值是要被确定的 (如果x==y那么没有限制),可以推一下什么情况下是1/0. 于是我们模拟一下这个操作,判一判 ...
- hihocoder 1509异或排序
描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 2^60 (2).对于所有 1 ≤ i < n ,有 ( ...
- HihoCoder#1509 : 异或排序(二进制)
题意 题目链接 Sol 挺简单的吧.考虑两个元素什么时候不满足条件 设\(a_i\)与\(a_i + 1\)最高的不同位分别为0 1,显然\(S\)的这一位必须为\(0\),否则这一位必须为\(1\) ...
- 【HIHOCODER 1509 】 异或排序
描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 260 (2).对于所有 1 ≤ i < n ,有 (a ...
- 【hihoCoder挑战赛28 A】异或排序
[题目链接]:http://hihocoder.com/problemset/problem/1509 [题意] [题解] 每次找到相邻两个数的二进制形式中; 不同的最高位; 显然S在这一位必然是确定 ...
- 【Java数据结构与算法】简单排序、二分查找和异或运算
简单排序 选择排序 概念 首先,找到数组中最小的那个元素,其次,把它和数组的第一个元素交换位置(如果第一个元素就是最小的元素那么它就和自己交换).再次,在剩下的元素中找到最小的元素,将它与数组的第二个 ...
随机推荐
- CREATE TABLE 语句后的 ON [PRIMARY] 起什么作用
CREATE TABLE [dbo].[table1] ( [gh] [char] (10) COLLATE Chinese_PRC_CI_AS NOT NULL ...
- asp实现阿里大鱼短信API接口的方法
阿里大鱼是阿里推出的产品,官方提供JAVA..NET.PHP等版本的SDK下载,不知为何,唯独不提供ASP版本的SDK. 不提供没关系,自己写就是了,参照官方提供的API写一个就是了. 本来以为无非是 ...
- protocol 和delegate(协议和代理)的区别
定义 protocol:中文叫协议,一个只有方法体(没有具体实现)的类,Java中称作接口,实现协议的类必须实现协议中@required标记的方法(如果有的话): delegate:中文叫代理或委托, ...
- 凸多边形 HRBUST - 1429 计算几何_凸包_未调完
任选一个点作为起始点,将其他点按与该点连线的极角排序,二分查询点在哪两个射线之间, 并特别判断一下边界即可. Code: #include <cstdio> #include <al ...
- 如何降低死循环的 CPU 占用
有的时候程序中需要使用死循环,比如消息监听就要用一个死循环,直到受到消息请求关闭才可能跳出循环. 一个 while(true){} 的循环中即便循环体是空的,也会占用几乎一整个 CPU 核心.为了降低 ...
- Unity2D 小游戏之 RocketMouse
这个小游戏源自这里.这几天闲时捡了点 Unity(很久没有摸它了),顺手将这个小游戏移植到了 Unity5.5.0,除了 Parallax Scrolling 还有点小问题外,其它功能全部完整.部分代 ...
- Linux赛车游戏 SuperTuxKart 1.0 正式发布
SuperTuxKart是一款受Mario Kart(马里奥赛车)启发并以Linux/Tux为主题的开源赛车游戏,经过12年多的开发,已经达到1.0版本.并且确定这个版本确实是一个重要的里程碑. Su ...
- 编写python代码获取4k高清壁纸
Huskiesir最近在研究python爬虫大约俩周了吧,由于比较懒,也没把具体研究的过程与经验写下来,实在是一大憾事.这次直接上干货,代码送给大家: import re import request ...
- SpringBoot中打包设置,将配置文件打包在外部
一.每次用maven的打包工具打包的时候 总是将配置文件一起打包进jar中!配置文件有点小修改就要重新打包很麻烦!!!!为了解决这一麻烦!找 了很多方法,下面的配置已经实现可用 我的项目目录结构如下 ...
- ASP.NET-权限管理五张表
ASP.NET 权限管理五张表 权限管理的表(5张表) 每个表里面必有的一些信息 序号 名称 字段 类型 主键 默认值 是否为空 备注 1 用户ID ID INT 是 ...