不管怎么求似乎都不太好求,我们试试生成函数.
这个东西好神奇.
生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数.
有时候,我们会将函数按等比数列求和公式进行压缩,这样会更方便.
首先,将所有物品的生成函数都列出来,发现所有式子的乘积为 $\frac{x}{(x-4)^{n}}$
即 $x\times$$\frac{1}{(1-x)^4}$.
依据麦克劳林展开,$\frac{1}{(1-x)^n}$的展开为 $\sum_{i=0}^{\infty}C_{n+i-1}^{n-1}x^i$.
再乘一个 $x$,并将 $n=4$ 带入,得 $\sum_{i=0}^{\infty}C_{2+i}^{3}x^i$
答案即为 $C_{2+n}^{3}$,真是壮观.

Code:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#define ll long long
#define mod 10007
using namespace std;
int main(){
int n=0; char c;
while(cin>>c) n*=10,n%=mod,n+=c-'0',n%=mod;
cout << ((((long long)n*(n+2)*(n+1))%mod)*1668)%mod;
return 0;
}

  

bzoj 3028: 食物 生成函数_麦克劳林展开的更多相关文章

  1. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  2. YTU 2452: 麦克劳林用于函数求值

    2452: 麦克劳林用于函数求值 时间限制: 1 Sec  内存限制: 128 MB 提交: 18  解决: 12 题目描述 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.如果函数足够光滑的话 ...

  3. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  4. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  5. BZOJ 3028 食物 生成函数

    Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...

  6. bzoj 3028 食物——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...

  7. bzoj 3028 食物 —— 生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...

  8. BZOJ 3028 食物 ——生成函数

    把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...

  9. bzoj 3028: 食物 -- 母函数

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...

随机推荐

  1. 【LibreOJ 6277】数列分块入门 1 (分块)

    emmm-学下分块~ 区间:数列中连续一段的元素 区间操作:将某个区间[a,b]的所有元素进行某种改动的操作 块:我们将数列划分成若干个不相交的区间,每个区间称为一个块 整块:在一个区间操作时,完整包 ...

  2. http协议的状态码(200,404,503)

    http协议的状态码 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态码. 100(继续) 请求者应当继续提出请求.服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101( ...

  3. 简述Web Service通讯技术的搭建流程

    Web Service 基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级 ...

  4. 0111mysql如何选择Join的顺序

    本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分"测试环境".这里主要介绍MySQL优化器的主要执行流程,而不是介绍一个优化器的各 ...

  5. jquery日历插件FullCalendar使用技巧

    原文链接:http://blog.csdn.net/u013493957/article/details/44920341   FullCalendar是一款基于jquery的日历控件,它有着很强大的 ...

  6. UIButton上字体的对齐方式

    设置UIButton上字体的对齐方式,不是用: [Button.titleLabel setTextAlignment:UITextAlignmentCenter]; 而是用: [Button set ...

  7. servletConfig和ServletContext 以及servletContextListener介绍

    <servlet>     <servlet-name>BeerParamTests</servlet-name>     <servlet-class> ...

  8. oracle rac下调节redo log file 文件大小

    rac下调节redo log file 文件大小 (1)查看当前日志信息: select * from v$logfile; (步骤2中得路径能够在这里MEMBER列看到,redo文件名称自己命名.比 ...

  9. java连接sql server

    package com.cps.rom.utils; /************************************************************************ ...

  10. css sprite的实现

    css sprite 为什么使用css sprite? 网页上的非常多静态小图片在载入时须要大量http请求,添加了响应时间.(哈哈.雅虎34条优化法则的第一条啊) css的background-po ...