BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab
【传送门:BZOJ2154&BZOJ2693】
简要题意:
给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$
题解:
莫比乌斯反演(因为BZOJ2693是多组数据,数据强一点,所以代码用BZOJ2693的)
设n<m,原式等于$\sum_{i=1}^{n}\sum_{j=1}^{m}i*j/gcd(i,j)$
然后枚举d值作为i和j的gcd,得到$$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i*j}{d}[gcd(i,j)==d]$$
因为gcd(i,j)==d,所以gcd(i/d,j/d)==1,得到$$\sum_{d=1}^{n}d*\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{m}{d}}i*j[gcd(i,j)==1]$$
因为莫反的性质:$\sum_{d|x}\mu(d)=[x==1]$,所以转化为$$\sum_{d=1}^{n}d*\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{m}{d}}i*j*\sum_{t|gcd(i,j)}\mu(t)$$
交换和式得到$$\sum_{d=1}^{n} d* \sum_{t=1}^{\frac{n}{d}} \mu(t) * \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{m}{d}} i*j[gcd(i,j)==t]$$
$$\sum_{d=1}^{n}d*\sum_{t=1}^{\frac{n}{d}}t^{2}*\mu(t)*\sum_{i=1}^{\frac{n}{dt}}\sum_{j=1}^{\frac{m}{dt}}i*j$$
设$T=dt$,$S(x)=\sum_{i=1}^{x}i$,得到$$\sum_{d=1}^{n}\sum_{t=1}^{\frac{n}{d}}T*t*\mu(t)*S(\frac{n}{T})*S(\frac{m}{T})$$
将$S(\frac{n}{T})*S(\frac{m}{T})$提前,得到$$\sum_{T=1}^{n}T*S(\frac{n}{T})*S(\frac{m}{T})\sum_{d|T}d*\mu(d)$$
因为$S(\frac{n}{T})*S(\frac{m}{T})$可以前缀和预处理,显然我们只要将$\sum_{d|T}d*\mu(d)$快速求出就可以了
设$F(T)=\sum_{d|T}d*\mu(d)$,显然是一个积性函数,在线性筛的时候求就行了
然后将$T*F(T)$求前缀和,然后整除分块加速就能过了
参考代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
int prime[],v[];
LL f[],sum[];
LL Mod=1e8+;
void pre(int n)
{
f[]=;
int tot=;
for(int i=;i<=n;i++)
{
if(v[i]==)
{
v[i]=i;
prime[++tot]=i;
f[i]=(-i+Mod)%Mod;
}
for(int j=;j<=tot;j++)
{
if(prime[j]>v[i]||prime[j]>n/i) break;
v[i*prime[j]]=prime[j];
if(i%prime[j]==){f[i*prime[j]]=f[i]%Mod;break;}
else f[i*prime[j]]=f[i]*f[prime[j]]%Mod;
}
}
for(int i=;i<=n;i++) f[i]=(f[i]*LL(i)%Mod+f[i-])%Mod;
for(int i=;i<=n;i++) sum[i]=(sum[i-]+LL(i))%Mod;
}
int main()
{
pre();
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
LL ans=;
for(int i=,j;i<=n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=(ans+(f[j]-f[i-]+Mod)%Mod*sum[n/i]%Mod*sum[m/i]%Mod)%Mod;
}
printf("%lld\n",ans);
}
return ;
}
BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab的更多相关文章
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- 题解-bzoj2154Crash的数字表格 & bzoj2693 jzptab
Problem bzoj2818-单组询问-无权限 bzoj2693-多组询问-需权限 洛谷1829-单组询问-无权限 \(T\)组询问(如果有),给定 \(n,m\),求 \[\sum_{i=1}^ ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- BZOJ2154: Crash的数字表格
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...
- 【莫比乌斯反演】BZOJ2154 Crash的数字表格
Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...
- bzoj千题计划253:bzoj2154: Crash的数字表格
http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
随机推荐
- hdu(2846)Repository
Problem Description When you go shopping, you can search in repository for avalible merchandises by ...
- 2015.04.23,外语,读书笔记-《Word Power Made Easy》 12 “如何奉承朋友” SESSION 33
1.eat, drink, and be merry 拉丁动词vivo(to live),加上名词vita(life),是许多重要英文词汇的来源. convivo是拉丁动词to live togeth ...
- UVA 1515 Pool construction 最大流跑最小割
Pool construction You are working for the International Company for Pool Construction, a constructio ...
- Foundation框架经常使用数据类型和NSAutoreleasePool自己主动释放池解析
第一.NSAutoreleasePool自己主动释放池解析 1.自己主动释放池的物理实现 自己主动释放池用栈来实现.当你创建一个新的自己主动释放池是,会压栈到栈顶.接受autorelease消息的对象 ...
- Mac OS下PHP开发环境的搭建——基于XAMPP和IntelliJ IDEA
简单记录一下在MacOS下,搭建PHP的开发环境吧.其实,从本质上来说,Mac对于PHP的支持还是很好的,默认带了PHP和Apache,但是由于前期对系统本身不熟悉,所以还是略微走了一些弯路--也就是 ...
- MacOS系统下简单安装以及配置MongoDB数据库(一)
最近写了一个用node来操作MongoDB完成增.删.改.查.排序.分页功能的示例,并且已经放在了服务器上地址:http://39.105.32.180:3333. 项目一共四部分: 1.MacOS下 ...
- Spark RDD概念学习系列之action操作
不多说,直接上干货! action操作
- 异步编程(二)基于事件的异步编程模式 (EAP)
一.引言 在上一个专题中为大家介绍了.NET 1.0中提出来的异步编程模式——APM,虽然APM为我们实现异步编程提供了一定的支持,同时它也存在着一些明显的问题——不支持对异步操作的取消和没有提供对进 ...
- Controller总结
下图显示了组建之间的基本控制流程 1.1控制器工厂.动作调用器 控制器工厂负责创建对请求进行服务的控制器实例 动作调用其负责查找并调用控制器类中的动作方法. 1.2自定义控制器工厂 namespace ...
- javascript动画函数封装(升级版)
//把 任意对象 的 任意数值属性 改变为 任意的目标值 function animate(obj, json, fn) { clearInterval(obj.timer); obj.timer = ...