F - Many Moves


Time limit : 2sec / Memory limit : 256MB

Score : 900 points

Problem Statement

There are N squares in a row. The squares are numbered 1,2,…,N from left to right.

You have two pieces, initially placed on square A and B, respectively. You will be asked to process Q queries of the following kind, in the order received:

  • Given an integer xi, move one of the two pieces of your choice to square xi.

Here, it takes you one second to move a piece one square. That is, the time it takes to move a piece from square X to Y is |XY| seconds.

Your objective is to process all the queries in the shortest possible time.

You may only move the pieces in response to queries, and you may not move both pieces at the same time. Also, it is not allowed to rearrange the order in which queries are given. It is, however, allowed to have both pieces in the same square at the same time.

Constraints

  • 1≤N,Q≤200,000
  • 1≤A,BN
  • 1≤xiN

Input

Input is given from Standard Input in the following format:

N Q A B
x1 x2 ... xQ

Output

Let the shortest possible time to process all the queries be X seconds. Print X.


Sample Input 1

8 3 1 8
3 5 1

Sample Output 1

7

All the queries can be processed in seven seconds, by:

  • moving the piece at square 1 to 3
  • moving the piece at square 8 to 5
  • moving the piece at square 3 to 1

Sample Input 2

9 2 1 9
5 1

Sample Output 2

4

The piece at square 9 should be moved first.


Sample Input 3

9 2 1 9
5 9

Sample Output 3

4

The piece at square 1 should be moved first.


Sample Input 4

11 16 8 1
1 1 5 1 11 4 5 2 5 3 3 3 5 5 6 7

Sample Output 4

21
分析:考虑dp[i][j]表示当前在x[i],j位置;
   设之前一步在a,b,当前到c,d,且a,c为上次和这次到达点;
   那么有a->c或b->c;
   若a->c,则dp[i][j]直接加上abs(x[i]-x[i-1]);
   若b->c,则dp[i][a]取min{dp[i-1][j]+abs(j-x[i])};
   而这两个都可以用线段树维护;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000009
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
const int maxn=2e5+;
const int N=2e5+;
using namespace std;
int id(int l,int r){return l+r|l!=r;}
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,q,a,b;
ll tag[maxn<<],mi[maxn<<],mi1[maxn<<],mi2[maxn<<];
void pup(int rt)
{
mi[rt]=min(mi[ls],mi[rs]);
mi1[rt]=min(mi1[ls],mi1[rs]);
mi2[rt]=min(mi2[ls],mi2[rs]);
tag[rt]=;
}
void pdw(int rt)
{
mi[ls]+=tag[rt];
mi1[ls]+=tag[rt];
mi2[ls]+=tag[rt];
tag[ls]+=tag[rt];
mi[rs]+=tag[rt];
mi1[rs]+=tag[rt];
mi2[rs]+=tag[rt];
tag[rs]+=tag[rt];
tag[rt]=;
}
void build(int l,int r,int rt)
{
if(l==r)
{
mi[rt]=mi1[rt]=mi2[rt]=1e18;
tag[rt]=;
return;
}
int mid=l+r>>;
build(l,mid,ls);
build(mid+,r,rs);
pup(rt);
}
void add(int L,int R,ll v,int l,int r,int rt)
{
if(L==l&&R==r)
{
mi[rt]+=v;
mi1[rt]+=v;
mi2[rt]+=v;
tag[rt]+=v;
return;
}
int mid=l+r>>;
if(tag[rt])pdw(rt);
if(R<=mid)add(L,R,v,l,mid,ls);
else if(L>mid)add(L,R,v,mid+,r,rs);
else
{
add(L,mid,v,l,mid,ls);
add(mid+,R,v,mid+,r,rs);
}
pup(rt);
}
void upd(int pos,ll v,int l,int r,int rt)
{
if(l==pos&&pos==r)
{
if(mi[rt]>v)
{
mi[rt]=v;
mi1[rt]=v-pos;
mi2[rt]=v+pos;
}
return;
}
int mid=l+r>>;
if(tag[rt])pdw(rt);
if(pos<=mid)upd(pos,v,l,mid,ls);
else upd(pos,v,mid+,r,rs);
pup(rt);
}
ll gao(int L,int R,int l,int r,int rt,ll *mi)
{
if(L==l&&R==r)return mi[rt];
int mid=l+r>>;
if(tag[rt])pdw(rt);
if(R<=mid)return gao(L,R,l,mid,ls,mi);
else if(L>mid)return gao(L,R,mid+,r,rs,mi);
else return min(gao(L,mid,l,mid,ls,mi),gao(mid+,R,mid+,r,rs,mi));
}
int main()
{
int i,j;
scanf("%d%d%d%d",&n,&q,&a,&b);
build(,n,);
upd(b,,,n,);
int pre=a;
rep(i,,q)
{
int x;
scanf("%d",&x);
ll cost1=gao(,x,,n,,mi1)+x;
ll cost2=gao(x,n,,n,,mi2)-x;
ll now=min(cost1,cost2);
add(,n,abs(x-pre),,n,);
upd(pre,now,,n,);
pre=x;
}
printf("%lld\n",gao(,n,,n,,mi));
return ;
}

F - Many Moves的更多相关文章

  1. arc073 F many moves(dp + 线段树)

    设dp[i][y]表示一个点在x[i],另一个点在y时最小要走的步数 那么有以下转移 对于y != x[i-1]的状态,可以证明,他们直接加|x[i] - x[i-1]|即可(如果有其他方案,不符合对 ...

  2. Scalaz(23)- 泛函数据结构: Zipper-游标定位

    外面沙尘滚滚一直向北去了,意识到年关到了,码农们都回乡过年去了,而我却留在这里玩弄“拉链”.不要想歪了,我说的不是裤裆拉链而是scalaz Zipper,一种泛函数据结构游标(cursor).在函数式 ...

  3. AtCoder瞎做第二弹

    ARC 067 F - Yakiniku Restaurants 题意 \(n\) 家饭店,\(m\) 张餐票,第 \(i\) 家和第 \(i+1\) 家饭店之间的距离是 \(A_i\) ,在第 \( ...

  4. 【AtCoder】ARC073

    ARC 073 C - Sentou 直接线段覆盖即可 #include <bits/stdc++.h> #define fi first #define se second #defin ...

  5. Mysql_以案例为基准之查询

    查询数据操作

  6. 2016 ccpc 网络选拔赛 F. Robots

    Robots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  7. [Educational Codeforces Round 16]A. King Moves

    [Educational Codeforces Round 16]A. King Moves 试题描述 The only king stands on the standard chess board ...

  8. UVA 439 Knight Moves

      // 题意:输入标准国际象棋棋盘上的两个格子,求马最少需要多少步从起点跳到终点 BFS求最短路: bfs并维护距离状态cnt, vis记录是否访问过 #include<cstdio> ...

  9. POJ 2243 Knight Moves

    Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13222   Accepted: 7418 Des ...

随机推荐

  1. thinkphp的model的where条件的两种形式

    thinkphp的model的where查询时有两种形式. $model->field('id')->where('customer_num is null or customer_num ...

  2. HIT1917Peaceful Commission(2-SAT)

    Peaceful Commission   Source : POI 2001   Time limit : 10 sec   Memory limit : 32 M Submitted : 2112 ...

  3. 自动调整速率的Actor设计模式

    问题背景 与数据库或者存储系统交互是所有应用软件都必不可少的功能之一,akka开发的系统也不例外.但akka特殊的地方在于,会尽可能的将所有的功能都设计成异步的,以避免Actor阻塞,然而无法避免IO ...

  4. 【BZOJ4025】二分图(可撤销并查集+线段树分治)

    题目: BZOJ4025 分析: 定理:一个图是二分图的充要条件是不存在奇环. 先考虑一个弱化的问题:保证所有边出现的时间段不会交叉,只会包含或相离. 还是不会?再考虑一个更弱化的问题:边只会出现不会 ...

  5. 用python语言写一个简单的计算器

    假如我们有这样一个式子: 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2 ...

  6. C#最实用的快捷键

    Ctrl+J(Alt+→):智能提示. Ctrl+X:删除整行. Shift+Alt+Enter:全屏切换 F12:跳转到定义. Ctrl+-.Ctrl+Shift+-:上一步.下一步(仅限于使用过上 ...

  7. 消息队列 (2) java实现简单的RabbtMQ

    假设有如下问题: 1.如果消费者连接中断,这期间我们应该怎么办? 2.如何做到负载均衡? 3.如何有效的将数据发送到相关的接收者?就是怎么样过滤 4.如何保证消费者收到完整正确的数据 5.如何让优先级 ...

  8. NHibernate学习(零)-本次学习遇到的错误汇总

    问题一: "System.TypeInitializationException"类型的未经处理的异常在 KimismeDemo.exe 中发生 其他信息: "NHibe ...

  9. Unity学习-元素类型(三)

    在看下面操作时,先记住三句话 1.游戏对象 是由 组件 组成的:衣服 2.材质(Material):就是衣服的设计方案 3.纹理(Texture):做衣服的布料 从GameObject到Cube 第一 ...

  10. reactnative(2) - Navigator 使用案例

    'use strict'; import React, { Component } from 'react'; import { AppRegistry, ScrollView, StyleSheet ...