# 洛谷 1373 dp
这题还不算太难,,当初看的时候不是很理解题意,以为他们会选择两条不同的路径,导致整体思路混乱


传送门


其实理解题意和思路之后还是敲了不短的时间,一部分身体原因再加上中午休息不太好,整个人思路较乱,靠本能打了一遍代码毫无头绪。恢复了一下状态重新开打,才算是A掉

题解

设dp[i][j][l][p]为当前走到第(i, j)位,当前(a - b) % k 为l,本次是第p个人取得药,p = 0为a,p = 1 为b,

此时的方案数

则 dp[i][j][l][1] += dp[i-1][j][((l + a[i][j]) % k + k) % k][0] + dp[i][j-1][((l + a[i][j]) % k + k) % k][0]

dp[i][j][l][0] += dp[i-1][j][((l - a[i][j]) % k + k) % k][1] + dp[i][j-1][((l - a[i][j]) % k + k) % k][1]

举个栗子:

假设本次在(3, 2),该1(uim)走,则该状态的上一个状态应为 当前在(3,1),该0(小a)走,当时的差为l + a[i][j] 另一个状态同理。

解释一下差加减的原理:

我们的dp方程的第三维定义的是a(小a) - b(uim)的差,那么按照上面的栗子来看,本步由uim来走,那么它们状态的差应减少,减少值为a[i][j],所以上一状态为l + a[i][j],

扯一点关于初始化的东西

由于题目中规定可以从每个点开始,同时必须小a先吸收,所以

对于读入的每一个a[i][j],设dp[i][j][a[i][j] % k][0] = 1

其余点均为0

关于k

实在有些不理解出题人的脑洞,,(lzn别打我= =),,只有k的容量,到了k+1就会清零,,,默默地k++吧

关于复杂度

记录两个人的当前值肯定会T,使用long long会M,据说常数太大会卡两个,暂时没发现

关于差值问题:

有人说差值可正可负,我当时也考虑了一段时间,后来发现在%k意义下对答案没有任何影响,即 k = 3时,(k + 1等于4时)a比b少2和a比b多2其实是等效的,即a拿2个后两人均相同

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm> const int maxn = 800 + 1;
const int mod = 1000000007;
int dp[maxn][maxn][16][2];
int a[maxn][maxn];
int n, m, k; int main () {
scanf("%d %d %d", &n, &m, &k);
k++;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d", &a[i][j]);
dp[i][j][(a[i][j]) % k][0] = 1;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
for (int l = 0; l < k; l++) {
dp[i][j][l][1] = (dp[i][j][l][1] + dp[i-1][j][((l + a[i][j]) % k + k) % k][0] + dp[i][j-1][((l + a[i][j]) % k + k) % k][0]) % mod;
dp[i][j][l][0] = (dp[i][j][l][0] + dp[i-1][j][((l - a[i][j]) % k + k) % k][1] + dp[i][j-1][((l - a[i][j]) % k + k) % k][1]) % mod;
}
}
}
long long ans = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
ans = (ans + dp[i][j][0][1]) % mod;
}
printf("%lld", ans); return 0;
}

洛谷 1373 dp 小a和uim之大逃离 良心题解的更多相关文章

  1. 【洛谷P1373】小a和uim之大逃离

    小a和uim之大逃离 题目链接 因为每次只能向下或向右走,我们可以递推 dp[i][j][d][0/1]表示走到(i,j),mod k 意义下差值为d,轮到小a/小uim操作时的方案数 dp[i][j ...

  2. 【洛谷P3818】小A和uim之大逃离 II

    小A和uim之大逃离 II 题目链接 比较裸的搜索,vis[i][j]再加一层[0/1]表示是否使用过魔液 转移时也将是否使用过魔液记录下来,广搜即可 #include<iostream> ...

  3. 【luogu P1373 小a和uim之大逃离】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1373 想不出来状态 看了一眼题解状态明白了 dp[i][j][h][1/0] 表示在i,j点差值为h是小A还 ...

  4. 洛谷1373 小a和uim之大逃离

    洛谷1373 小a和uim之大逃离 本题地址:http://www.luogu.org/problem/show?pid=1373 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北 ...

  5. 洛谷 P1373 小a和uim之大逃离

    2016-05-30 12:31:59 题目链接: P1373 小a和uim之大逃离 题目大意: 一个N*M的带权矩阵,以任意起点开始向右或者向下走,使得奇数步所得权值和与偶数步所得权值和关于K的余数 ...

  6. P3818 小A和uim之大逃离 II(洛谷月赛)

    P3818 小A和uim之大逃离 II 题目背景 话说上回……还是参见 https://www.luogu.org/problem/show?pid=1373 吧 小a和uim再次来到雨林中探险.突然 ...

  7. AC日记——小A和uim之大逃离 II 洛谷七月月赛

    小A和uim之大逃离 II 思路: spfa: 代码: #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f ...

  8. 洛谷P1373 小a和uim之大逃离

    P1373 小a和uim之大逃离 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从 ...

  9. 洛古 P1373 小a和uim之大逃离

    P1373 小a和uim之大逃离 题目提供者lzn 标签 动态规划 洛谷原创 难度 提高+/省选- 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电 ...

随机推荐

  1. 洛谷P2744 [USACO5.3]量取牛奶Milk Measuring

    题目描述 农夫约翰要量取 Q(1 <= Q <= 20,000)夸脱(夸脱,quarts,容积单位--译者注) 他的最好的牛奶,并把它装入一个大瓶子中卖出.消费者要多少,他就给多少,从不有 ...

  2. bzoj2744 [HEOI2012]朋友圈——二分图匹配

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2744 首先,求一个图的最大团等价于求它的补图的最大独立集,而二分图的最大独立集 = 总点数 ...

  3. PCB genesis Slot槽转钻孔(不用G85命令)实现方法

    PCB钻Slot槽一般都采用G85命令钻槽孔,而采用G85命令工程CAM无法准确的知道Slot槽钻多少个孔,并不能决定钻槽孔的顺序,因为采用G85命令钻孔密度与钻槽顺序由钻机本身决定的.在这里介绍一种 ...

  4. thinkphp调试手段

    使用ThinkPHP应该掌握的调试手段经常看到有人问到findAll的返回数据类型是什么之类的问题,以及出错了不知道什么原因的情况,其实还是没有熟悉ThinkPHP内置的调试手段和方法,抛开IDE本身 ...

  5. C语言过时了?为什么还要推荐每一位程序员都来学一下C语言?

    互联网蓬勃发展的时代,有一类人做出了巨大的贡献,这一群人被大家称之为程序员,怎样才能成为一名优秀的程序员呢,为什么每一个程序员都需要学习C语言呢? 就让我来跟大家分享分享:   在学习C/C++或者想 ...

  6. akka设计模式系列-Backend模式

    上一节我们介绍了Akka使用的基本模式,简单点来说就是,发消息给actor,处理结束后返回消息.但这种模式有个缺陷,就是一旦某个消息处理的比较慢,就会阻塞后面所有消息的处理.那么有没有方法规避这种阻塞 ...

  7. C# 清除coockies

    if (Request.Cookies["zxcookies"] != null)        {            HttpCookie mycookie;         ...

  8. Spring思维课程导图——bean属性的设置

  9. Patch 21352635 - Database Patch Set Update 11.2.0.4.8

    一.CPU和PSU 近日,将数据库从9.2.0.6升级到11.2.0.4后,发现11.2.0.4通过DBLINK访问其他的9i库时发生ORA-02072错误,通过Google找到解决方案,即升级到PS ...

  10. Android:用签名打包后微信分享失效

    刚开始使用微信分享,申请的微信appid也可以在直接使用,分享成功! 当我使用自己的签名打包分享时却分享失败,一闪而过,好郁闷的说,为什么之前没有打包就可以,签名打包后就不可以了... 开始查找各种资 ...