简介:

杨辉三角每条斜线上的数之和就构成斐波那契数列。

思路:

参考文章:https://mp.weixin.qq.com/s?src=11&timestamp=1551321876&ver=1455&signature=ahEqF*AhQMM5L8e-JCqIGUm6vZ8dQHWSX70P-j-tWtN2gQYpHJSB61cItv2h5Sy-DE0E5grEEVTQikdpIT9tC34u5qLh-mvM*PhBuE3S6nU32*9k1NmkS3krk0YVxRpM&new=1

1.递归法

class Solution:
def Fibonacci(self, n):
# write code here
if n <= 1:
return n
while n >= 2:
return self.Fibonacci(n-1)+self.Fibonacci(n-2)

f(a)会重复计算,这就是递归的最大问题,对于同一个f(a),不能复用。这样直接求解,时间复杂度是指数级的,不可行;

2.正推法

上述方法是采用反向推导,假设要求f(5), 则f(5)=f(4)+f(3); 而f(4)=f(3)+f(2),f(3)=f(2)+f(1);.......一路递归下去,最终都将递归到f(0)和f(1)上来。反过来想,我们不倒着f(n),f(n-1),f(n-2)这么计算,而是f(0),f(1),f(2)…f(n)这么正向计算,岂不是更快么?这么正向的计算,只需要一个for循环,就能够计算出f(n)的值,时间复杂度是O(n)

# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.array=[0]*40 #数组定义,初始化
def Fibonacci(self, n):
# write code here
self.array[0]=0
self.array[1]=1
for i in range(2,n+1): #直接遍历所有
self.array[i]=self.array[i-1]+self.array[i-2]
return self.array[n]

关于数组定义:

  • 一维数组:a1 = [0]*10; a2 = range(10);a3 = [0 for x in range(0, 10)]
  • 二维数组:a = [ [ random.random() for x in range(10) ]  for y in range(5)]  #5行10列];  b=[ [ 0 ]*10 ] * 5

在一维数组中,上述几种方式没有区别。

但是在二维数组中,a[0][0]=1时,只有a[0][0]为1,其他全为0。b[0][0]=1时,b[0][0],b[1][0]...直到b[4,0]全部为1。由此得到二维数组中,若采用b这种定义,每一列数据将全是一个相同的引用,即指向同一地址。故 b = [[0]*10]*5并不符合我们常规意义上的二维数组。

此外还要多种求解方式,复杂度从指数级到O(n) 到 O(lgn) 到 O(1)均有,具体可读参考文章

[剑指offer] 7. 斐波那契数列 (递归 时间复杂度)的更多相关文章

  1. 《剑指offer》斐波那契数列

    本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...

  2. 剑指offer:斐波那契数列

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n< ...

  3. 力扣 - 剑指 Offer 10- I. 斐波那契数列

    题目 剑指 Offer 10- I. 斐波那契数列 思路1(递归 / 自顶向下) 这题是很常见的一道入门递归题,可以采用自顶向下的递归方法,比如我们要求第n个位置的值,根据斐波那契数列的定义fib(n ...

  4. 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题

     本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...

  5. Go语言实现:【剑指offer】斐波那契数列

    该题目来源于牛客网<剑指offer>专题. 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) n<=39 Go语言实现: 递归: ...

  6. 剑指offer三: 斐波拉契数列

    斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...

  7. 剑指Offer 7. 斐波那契数列 (递归)

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 题目地址 https://www.nowcoder.com/prac ...

  8. 《剑指offer》-斐波那契数列

    大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 这么直接的问fibonacci,显然是迭代计算.递归的问题在于重复计算,而迭代则避免了这一点:递归是自 ...

  9. 【剑指offer】斐波那契数列

    一.题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 二.思路: 式子: n=0时,f=0:n=1或者n=2时f=1:否则f=f(n-1)+f(n ...

随机推荐

  1. js:Array对象常用方法介绍

    前言 在js中,数组作为一个特殊的对象.是我们常用的数据格式.今天就来梳理一下常用的数组方法. 1.基础 几种基础的就简单介绍一下:创建数组 var arr1 = new Array(); //括号可 ...

  2. [asp.net]ashx中session存入,aspx为null的原因(使用flash uploader)

    I am using uploadify to upload files, they automatically post to the handler. I then modify the sess ...

  3. C++里面mutable的作用

    mutalbe的中文意思是“可变的,易变的”,跟constant(既C++中的const)是反义词. 在C++中,mutable也是为了突破const的限制而设置的.被mutable修饰的变量,将永远 ...

  4. Ubuntu14.04.1安装搜狗拼音输入法

    之前在Ubuntu16.04下安装过搜狗,在印象中与这次遇到的问题不一样,因此先说明一下这次Ubuntu的版本号: 参考博客http://blog.csdn.net/tao_627/article/d ...

  5. gitlab一键安装 笔记

    0 简单介绍bitnami和gitlab bitnami BitNami是一个开源项目,该项目产生的开源软件包安装 Web应用程序和解决方式堆栈.以及虚拟设备. bitnami主办Bitrock公司成 ...

  6. 【HDU 2176】 取(m堆)石子游戏

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2176 [算法] Nim博弈 当石子数异或和不为0时,先手必胜,否则先手必败 设石子异或和为S 如果 ...

  7. 操作系统-容器-引擎容器-百科:Docker

    ylbtech-操作系统-容器-引擎容器-百科:Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上 ...

  8. HttpClient连接超时及读取超时

    HttpClient连接超时及读取超时 httpClient在执行具体http请求时候 有一个连接的时间和读取内容的时间: HttpClient连接时间 所谓连接的时候 是HttpClient发送请求 ...

  9. crawler4j多线程爬虫统计分析数据

    该事例演示了如何在多线程中统计和分析数据: 首先建一个状态实体类CrawlStat: package com.demo.collectingData; /** * 爬虫状态实体类 统计爬虫信息 * @ ...

  10. BZOJ 3796 后缀数组+KMP

    思路: 写得我头脑发蒙,,, 旁边还有俩唱歌的 抓狂 (感谢lh大爷查错) 首先 1.w是s1的子串 2.w是s2的子串 这两步很好办啊~ 后缀数组一下O(n)就可以搞 重点是 这个:3.s3不是w的 ...