一、前言

1、Skip-Thought-Vector论文 https://github.com/ryankiros/skip-thoughts

2、本文假设读者已了解Skip-Gram-Vector和RNN相关基础

3、quick_thought 论文:Lajanugen Logeswaran, Honglak Lee, An efficient framework for learning sentence representations. In ICLR, 2018.

二、实战

1、对数据进行分句(去掉过短的句子)、删除频率高的句子、分词

def fenju(data):
sentence=[]
for i in range(len(data)):
try:
m = re.findall('。',data[i][0])
# print(m)
if data[i][1] is not None and len(m)>0:
if len(m)>1:
content=data[i][0].split('。')
# print(content)
for c in range(len(content)):
if len(content[c])>10:
sentence.append(content[c]+'。')
elif len(data[i][0])>10:
sentence.append(data[i][0])
else:
continue
except:
continue
return sentence def _process_sentence_list(sentence_list, threshold=0.01):
sentence_count = Counter(sentence_list)
total_count = len(sentence_list)
# 计算句子频率
sentence_freqs = {w: c / total_count for w, c in sentence_count.items()}
# 剔除出现频率太高的句子
sentence=[]
for w in range(len(sentence_list)):
if sentence_freqs[sentence_list[w]] < threshold:
sentence.append(sentence_list[w])
else:
continue
return sentence def fenci(alltext, writefile, filename):
if not os.path.exists(writefile):
os.makedirs(writefile)
sentence = [' '.join(jieba.lcut(''.join(text.split()))) for text in alltext]
print(sentence)
with open(os.path.join(writefile, filename), "w") as fw:
fw.write("\n".join(sentence))

2、构建vocab、TFRecord文件(详细看github代码)

3、模型输入定义(3种模式train/eval/encode)

  def build_inputs(self):

    if self.mode == "encode":
encode_ids = tf.placeholder(tf.int64, (None, None), name="encode_ids")
encode_mask = tf.placeholder(tf.int8, (None, None), name="encode_mask")
else:
# Prefetch serialized tf.Example protos.
input_queue = input_ops.prefetch_input_data(
self.reader,
FLAGS.input_file_pattern,
shuffle=FLAGS.shuffle_input_data,
capacity=FLAGS.input_queue_capacity,
num_reader_threads=FLAGS.num_input_reader_threads)
print("input_queue",input_queue)
# Deserialize a batch.
serialized = input_queue.dequeue_many(FLAGS.batch_size)
encode = input_ops.parse_example_batch(serialized)
encode_ids = encode.ids
encode_mask = encode.mask
self.encode_ids = encode_ids
self.encode_mask = encode_mask

由于我们每个batch中句子都进行了padding,为了防止padding对训练的影响,这里需要传递掩码给到RNN网络--每个句子各自的原始长度(encode_mask)。

4、对输入句子进行embedding

  def build_word_embeddings(self):
rand_init = self.uniform_initializer
self.word_embeddings = []
self.encode_emb = []
self.init = None
for v in self.config.vocab_configs:
if v.mode == 'fixed':
if self.mode == "train":
word_emb = tf.get_variable(
name=v.name,
shape=[v.size, v.dim],
trainable=False)
embedding_placeholder = tf.placeholder(
tf.float32, [v.size, v.dim])
embedding_init = word_emb.assign(embedding_placeholder) rand = np.random.rand(1, v.dim)
word_vecs = np.load(v.embs_file)
load_vocab_size = word_vecs.shape[0]
assert(load_vocab_size == v.size - 1)
word_init = np.concatenate((rand, word_vecs), axis=0)
self.init = (embedding_init, embedding_placeholder, word_init) else:
word_emb = tf.get_variable(
name=v.name,
shape=[v.size, v.dim]) encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids)
self.word_emb = word_emb
self.encode_emb.extend([encode_emb, encode_emb])##### if v.mode == 'trained':
for inout in ["", "_out"]:
word_emb = tf.get_variable(
name=v.name + inout,
shape=[v.size, v.dim],
initializer=rand_init)
if self.mode == 'train':
self.word_embeddings.append(word_emb) encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids)
self.encode_emb.append(encode_emb) if v.mode == 'expand':
for inout in ["", "_out"]:
encode_emb = tf.placeholder(tf.float32, (
None, None, v.dim), v.name + inout)
self.encode_emb.append(encode_emb)
word_emb_dict = read_vocab_embs(v.vocab_file + inout + ".txt",
v.embs_file + inout + ".npy")
self.word_embeddings.append(word_emb_dict) if v.mode != 'expand' and self.mode == 'encode':
word_emb_dict = read_vocab(v.vocab_file)
self.word_embeddings.extend([word_emb_dict, word_emb_dict])

将句子中的每一个字都转化为vocab size长度的向量。v.mode的3种模式fixed(使用预训练的embedding)/train(训练)/expand(扩展)。 最终输出的形式[encode_emb,encode_emb],用来获取上下句联系。

5、构建encoder

encoder对句子进行encode,得到最终的hidden state,这里可用单层的LSTM网络\双向LSTM\双向GRU。

  def _initialize_cell(self, num_units, cell_type="GRU"):
if cell_type == "GRU":
return tf.contrib.rnn.GRUCell(num_units=num_units)
elif cell_type == "LSTM":
return tf.contrib.rnn.LSTMCell(num_units=num_units)
else:
raise ValueError("Invalid cell type") def rnn(self, word_embs, mask, scope, encoder_dim, cell_type="GRU"):
length = tf.to_int32(tf.reduce_sum(mask, 1), name="length")
if self.config.bidir:
if encoder_dim % 2:
raise ValueError(
"encoder_dim must be even when using a bidirectional encoder.")
num_units = encoder_dim // 2
cell_fw = self._initialize_cell(num_units, cell_type=cell_type)
cell_bw = self._initialize_cell(num_units, cell_type=cell_type)
outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=word_embs,
sequence_length=length,
dtype=tf.float32,
scope=scope)
if cell_type == "LSTM":
states = [states[0][1], states[1][1]]
state = tf.concat(states, 1)
else:
cell = self._initialize_cell(encoder_dim, cell_type=cell_type)
outputs, state = tf.nn.dynamic_rnn(
cell=cell,
inputs=word_embs,
sequence_length=length,
dtype=tf.float32,
scope=scope)
if cell_type == "LSTM":
state = state[1]
return state def build_encoder(self):
"""Builds the sentence encoder. Inputs:
self.encode_emb
self.encode_mask Outputs:
self.thought_vectors Raises:
ValueError: if config.bidirectional_encoder is True and config.encoder_dim
is odd.
"""
names = ["", "_out"]
self.thought_vectors = []
for i in range(2):
with tf.variable_scope("encoder" + names[i]) as scope:
if self.config.encoder == "gru":
sent_rep = self.rnn(self.encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="GRU")
elif self.config.encoder == "lstm":
sent_rep = self.rnn(self.encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="LSTM")
elif self.config.encoder == 'bow':
sent_rep = self.bow(self.encode_emb[i], self.encode_mask)
else:
raise ValueError("Invalid encoder") thought_vectors = tf.identity(sent_rep, name="thought_vectors")
self.thought_vectors.append(thought_vectors)

可见分别对[encode_emb,encode_emb]进行了encode,得到[thought_vectors,thought_vectors]

6、构建损失函数

  def build_loss(self):
"""Builds the loss Tensor. Outputs:
self.total_loss
"""
all_sen_embs = self.thought_vectors if FLAGS.dropout:
mask_shp = [1, self.config.encoder_dim]
bin_mask = tf.random_uniform(mask_shp) > FLAGS.dropout_rate
bin_mask = tf.where(bin_mask, tf.ones(mask_shp), tf.zeros(mask_shp))
src = all_sen_embs[0] * bin_mask
dst = all_sen_embs[1] * bin_mask
scores = tf.matmul(src, dst, transpose_b=True)
else:
scores = tf.matmul(all_sen_embs[0], all_sen_embs[1], transpose_b=True)###study pre current post # Ignore source sentence
scores = tf.matrix_set_diag(scores, np.zeros(FLAGS.batch_size))
# Targets
targets_np = np.zeros((FLAGS.batch_size, FLAGS.batch_size))
ctxt_sent_pos = list(range(-FLAGS.context_size, FLAGS.context_size + 1))
ctxt_sent_pos.remove(0)
for ctxt_pos in ctxt_sent_pos:
targets_np += np.eye(FLAGS.batch_size, k=ctxt_pos)
targets_np_sum = np.sum(targets_np, axis=1, keepdims=True)
targets_np = targets_np/targets_np_sum
targets = tf.constant(targets_np, dtype=tf.float32) # Forward and backward scores
f_scores = scores[:-1]
b_scores = scores[1:] losses = tf.nn.softmax_cross_entropy_with_logits(
labels=targets, logits=scores) loss = tf.reduce_mean(losses) tf.summary.scalar("losses/ent_loss", loss)
self.total_loss = loss if self.mode == "eval":
f_max = tf.to_int64(tf.argmax(f_scores, axis=1))
b_max = tf.to_int64(tf.argmax(b_scores, axis=1)) targets = range(FLAGS.batch_size - 1)
targets = tf.constant(list(targets), dtype=tf.int64)
fwd_targets = targets + 1 names_to_values, names_to_updates = tf.contrib.slim.metrics.aggregate_metric_map({
"Acc/Fwd Acc": tf.contrib.slim.metrics.streaming_accuracy(f_max, fwd_targets),
"Acc/Bwd Acc": tf.contrib.slim.metrics.streaming_accuracy(b_max, targets)
}) for name, value in names_to_values.items():
tf.summary.scalar(name, value) self.eval_op = names_to_updates.values()

损失函数图解如下:

用 tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=scores)进行交叉熵,从targets可以看出quick_thought思想是根据上下文来推出目标句的相似性,个人认为并没有学习到目标句的特征,我用quick_thought训练出来的句子向量进行多类别分类,效果不是很好(quick_thought 评估里的例子有电影情感分类)。

具体论文复现的代码https://github.com/lajanugen/S2V(英文)

修改https://github.com/jinjiajia/Quick_Thought(中文)

基于Quick_Thought Vectors的Sentence2Vec神经网络实现的更多相关文章

  1. 基于MTCNN多任务级联卷积神经网络进行的人脸识别 世纪晟人脸检测

    神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多 ...

  2. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

  3. 深度学习基础-基于Numpy的多层前馈神经网络(FFN)的构建和反向传播训练

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及花书的读书笔记.本文将以多分类任务为例,介绍多层的前馈神经网络(Feed Forward Networks,FFN)加上 ...

  4. 优化基于FPGA的深度卷积神经网络的加速器设计

    英文论文链接:http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf 翻译:卜居 转载请注明出处:http://blog.csdn.net/k ...

  5. 深度学习(五)基于tensorflow实现简单卷积神经网络Lenet5

    原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u01287127 ...

  6. 基于区域的全卷积神经网络(R-FCN)简介

    在 Faster R-CNN 中,检测器使用了多个全连接层进行预测.如果有 2000 个 ROI,那么成本非常高. feature_maps = process(image)ROIs = region ...

  7. 人脸检测数据源制作与基于caffe构架的ALEXNET神经网络训练

    本篇文章主要记录的是人脸检测数据源制作与ALEXNET网络训练实现检测到人脸(基于caffe). 1.数据获取 数据获取: ① benchmark是一个行业的基准(数据库.论文.源码.结果),例如WI ...

  8. 基于theano的深度卷积神经网络

    使用了两个卷积层.一个全连接层和一个softmax分类器. 在测试数据集上正确率可以达到99.22%. 代码参考了neural-networks-and-deep-learning #coding:u ...

  9. GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu

    load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...

随机推荐

  1. 域名系统(DNS)

    DNS (domain name server/system) 1.基本信息 网络中数据通信依赖ip地址 测试:手动将dns服务地址改为空值,通过ip和域名分别测试网络的联通性 FQDN 完全域名(完 ...

  2. Fastdfs环境搭建

    环境准备 使用的系统软件 名称 说明 centos 7.x libfatscommon FastDFS分离出的一些公用函数包 FastDFS FastDFS本体 fastdfs-nginx-modul ...

  3. 1.1 Eclipse的安装

    下载地址:http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigosr1 2.java jdk 的 ...

  4. 02018_StringBuffer练习

    1.已知int[] arr = {34,12,89,68}; 将其中的元素转成字符串,格式 [34,12,89,68]: 参考:02011_定义打印数组元素方法,按照给定的格式打印[11, 33, 4 ...

  5. CF909B Segments

    CF909B Segments 题意翻译 题目描述 给你一个整数N.考虑坐标轴上所有可能的部分,在整数点上的端点,坐标在0到N之间,包括它们. 您希望在几个层中绘制这些片段,这样在每个层中这些片段就不 ...

  6. Storm同时接收多个源(spout和bolt)

    参考: http://blog.csdn.net/nyistzp/article/details/51483779

  7. rails的数据库查询方法

    rails的数据库查询方法 学习了:http://blog.csdn.net/menxu_work/article/details/8664962 学习了:http://www.cnblogs.com ...

  8. [HTML 5] More about ARIA Relationships

  9. Struts2值栈的相关操作

    import org.apache.struts2.ServletActionContext; import com.opensymphony.xwork2.ActionContext; import ...

  10. 杂项-电信:TL9000

    ylbtech-杂项-电信:TL9000 TL9000是电信业质量体系要求(书1)与质量体系法则(书2)的指南, 它包括ISO9001的所有要求,以及硬件.软件, 服务方面行业的特别要求. 这些新增要 ...